MakeItFrom.com
Menu (ESC)

2195 Aluminum vs. EN 1.4542 Stainless Steel

2195 aluminum belongs to the aluminum alloys classification, while EN 1.4542 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2195 aluminum and the bottom bar is EN 1.4542 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
190
Elongation at Break, % 9.3
5.7 to 20
Fatigue Strength, MPa 190
370 to 640
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
76
Shear Strength, MPa 350
550 to 860
Tensile Strength: Ultimate (UTS), MPa 590
880 to 1470
Tensile Strength: Yield (Proof), MPa 560
580 to 1300

Thermal Properties

Latent Heat of Fusion, J/g 390
280
Maximum Temperature: Mechanical, °C 210
860
Melting Completion (Liquidus), °C 660
1430
Melting Onset (Solidus), °C 550
1380
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 130
16
Thermal Expansion, µm/m-K 23
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 100
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 31
13
Density, g/cm3 3.0
7.8
Embodied Carbon, kg CO2/kg material 8.6
2.7
Embodied Energy, MJ/kg 160
39
Embodied Water, L/kg 1470
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 54
62 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 2290
880 to 4360
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
25
Strength to Weight: Axial, points 55
31 to 52
Strength to Weight: Bending, points 53
26 to 37
Thermal Diffusivity, mm2/s 49
4.3
Thermal Shock Resistance, points 26
29 to 49

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 91.9 to 94.9
0
Carbon (C), % 0
0 to 0.070
Chromium (Cr), % 0
15 to 17
Copper (Cu), % 3.7 to 4.3
3.0 to 5.0
Iron (Fe), % 0 to 0.15
69.6 to 79
Lithium (Li), % 0.8 to 1.2
0
Magnesium (Mg), % 0.25 to 0.8
0
Manganese (Mn), % 0 to 0.25
0 to 1.5
Molybdenum (Mo), % 0
0 to 0.6
Nickel (Ni), % 0
3.0 to 5.0
Niobium (Nb), % 0
0 to 0.45
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.12
0 to 0.7
Silver (Ag), % 0.25 to 0.6
0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0.080 to 0.16
0
Residuals, % 0 to 0.15
0