MakeItFrom.com
Menu (ESC)

2195 Aluminum vs. EN 1.4905 Stainless Steel

2195 aluminum belongs to the aluminum alloys classification, while EN 1.4905 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2195 aluminum and the bottom bar is EN 1.4905 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
190
Elongation at Break, % 9.3
19
Fatigue Strength, MPa 190
330
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
76
Shear Strength, MPa 350
460
Tensile Strength: Ultimate (UTS), MPa 590
740
Tensile Strength: Yield (Proof), MPa 560
510

Thermal Properties

Latent Heat of Fusion, J/g 390
270
Maximum Temperature: Mechanical, °C 210
660
Melting Completion (Liquidus), °C 660
1480
Melting Onset (Solidus), °C 550
1440
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 130
26
Thermal Expansion, µm/m-K 23
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
3.7
Electrical Conductivity: Equal Weight (Specific), % IACS 100
4.2

Otherwise Unclassified Properties

Base Metal Price, % relative 31
9.5
Density, g/cm3 3.0
7.9
Embodied Carbon, kg CO2/kg material 8.6
2.8
Embodied Energy, MJ/kg 160
40
Embodied Water, L/kg 1470
90

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 54
130
Resilience: Unit (Modulus of Resilience), kJ/m3 2290
680
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
24
Strength to Weight: Axial, points 55
26
Strength to Weight: Bending, points 53
23
Thermal Diffusivity, mm2/s 49
7.0
Thermal Shock Resistance, points 26
25

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 91.9 to 94.9
0 to 0.040
Boron (B), % 0
0.00050 to 0.0050
Carbon (C), % 0
0.090 to 0.13
Chromium (Cr), % 0
8.5 to 9.5
Copper (Cu), % 3.7 to 4.3
0
Iron (Fe), % 0 to 0.15
86.2 to 88.8
Lithium (Li), % 0.8 to 1.2
0
Magnesium (Mg), % 0.25 to 0.8
0
Manganese (Mn), % 0 to 0.25
0.3 to 0.6
Molybdenum (Mo), % 0
0.9 to 1.1
Nickel (Ni), % 0
0.1 to 0.4
Niobium (Nb), % 0
0.060 to 0.1
Nitrogen (N), % 0
0.050 to 0.090
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.12
0.1 to 0.5
Silver (Ag), % 0.25 to 0.6
0
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.1
0
Tungsten (W), % 0
0.9 to 1.1
Vanadium (V), % 0
0.18 to 0.25
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0.080 to 0.16
0
Residuals, % 0 to 0.15
0