MakeItFrom.com
Menu (ESC)

2195 Aluminum vs. C84000 Brass

2195 aluminum belongs to the aluminum alloys classification, while C84000 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2195 aluminum and the bottom bar is C84000 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
110
Elongation at Break, % 9.3
27
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
42
Tensile Strength: Ultimate (UTS), MPa 590
250
Tensile Strength: Yield (Proof), MPa 560
140

Thermal Properties

Latent Heat of Fusion, J/g 390
190
Maximum Temperature: Mechanical, °C 210
170
Melting Completion (Liquidus), °C 660
1040
Melting Onset (Solidus), °C 550
940
Specific Heat Capacity, J/kg-K 900
380
Thermal Conductivity, W/m-K 130
72
Thermal Expansion, µm/m-K 23
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
16
Electrical Conductivity: Equal Weight (Specific), % IACS 100
17

Otherwise Unclassified Properties

Base Metal Price, % relative 31
30
Density, g/cm3 3.0
8.6
Embodied Carbon, kg CO2/kg material 8.6
3.0
Embodied Energy, MJ/kg 160
49
Embodied Water, L/kg 1470
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 54
58
Resilience: Unit (Modulus of Resilience), kJ/m3 2290
83
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 46
19
Strength to Weight: Axial, points 55
8.2
Strength to Weight: Bending, points 53
10
Thermal Diffusivity, mm2/s 49
22
Thermal Shock Resistance, points 26
9.0

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 91.9 to 94.9
0 to 0.0050
Antimony (Sb), % 0
0 to 0.020
Boron (B), % 0
0 to 0.1
Copper (Cu), % 3.7 to 4.3
82 to 89
Iron (Fe), % 0 to 0.15
0 to 0.4
Lead (Pb), % 0
0 to 0.090
Lithium (Li), % 0.8 to 1.2
0
Magnesium (Mg), % 0.25 to 0.8
0
Manganese (Mn), % 0 to 0.25
0 to 0.010
Nickel (Ni), % 0
0.5 to 2.0
Phosphorus (P), % 0
0 to 0.050
Silicon (Si), % 0 to 0.12
0 to 0.0050
Silver (Ag), % 0.25 to 0.6
0
Sulfur (S), % 0
0.1 to 0.65
Tin (Sn), % 0
2.0 to 4.0
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.25
5.0 to 14
Zirconium (Zr), % 0.080 to 0.16
0 to 0.1
Residuals, % 0 to 0.15
0 to 0.7