MakeItFrom.com
Menu (ESC)

2195 Aluminum vs. C85800 Brass

2195 aluminum belongs to the aluminum alloys classification, while C85800 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2195 aluminum and the bottom bar is C85800 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
100
Elongation at Break, % 9.3
15
Poisson's Ratio 0.33
0.31
Shear Modulus, GPa 26
40
Tensile Strength: Ultimate (UTS), MPa 590
380
Tensile Strength: Yield (Proof), MPa 560
210

Thermal Properties

Latent Heat of Fusion, J/g 390
170
Maximum Temperature: Mechanical, °C 210
120
Melting Completion (Liquidus), °C 660
900
Melting Onset (Solidus), °C 550
870
Specific Heat Capacity, J/kg-K 900
380
Thermal Conductivity, W/m-K 130
84
Thermal Expansion, µm/m-K 23
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
20
Electrical Conductivity: Equal Weight (Specific), % IACS 100
22

Otherwise Unclassified Properties

Base Metal Price, % relative 31
24
Density, g/cm3 3.0
8.0
Embodied Carbon, kg CO2/kg material 8.6
2.8
Embodied Energy, MJ/kg 160
47
Embodied Water, L/kg 1470
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 54
48
Resilience: Unit (Modulus of Resilience), kJ/m3 2290
210
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 46
20
Strength to Weight: Axial, points 55
13
Strength to Weight: Bending, points 53
15
Thermal Diffusivity, mm2/s 49
27
Thermal Shock Resistance, points 26
13

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 91.9 to 94.9
0 to 0.55
Antimony (Sb), % 0
0 to 0.050
Arsenic (As), % 0
0 to 0.050
Copper (Cu), % 3.7 to 4.3
57 to 69
Iron (Fe), % 0 to 0.15
0 to 0.5
Lead (Pb), % 0
0 to 1.5
Lithium (Li), % 0.8 to 1.2
0
Magnesium (Mg), % 0.25 to 0.8
0
Manganese (Mn), % 0 to 0.25
0 to 0.25
Nickel (Ni), % 0
0 to 0.5
Phosphorus (P), % 0
0 to 0.010
Silicon (Si), % 0 to 0.12
0 to 0.25
Silver (Ag), % 0.25 to 0.6
0
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0
0 to 1.5
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.25
31 to 41
Zirconium (Zr), % 0.080 to 0.16
0
Residuals, % 0 to 0.15
0 to 1.3