MakeItFrom.com
Menu (ESC)

2219-T6 Aluminum vs. 6008-T6 Aluminum

Both 2219-T6 aluminum and 6008-T6 aluminum are aluminum alloys. Both are furnished in the T6 temper. They have a moderately high 93% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 2219-T6 aluminum and the bottom bar is 6008-T6 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
69
Elongation at Break, % 5.4
9.1
Fatigue Strength, MPa 110
88
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
26
Shear Strength, MPa 250
170
Tensile Strength: Ultimate (UTS), MPa 420
290
Tensile Strength: Yield (Proof), MPa 280
220

Thermal Properties

Latent Heat of Fusion, J/g 390
410
Maximum Temperature: Mechanical, °C 230
180
Melting Completion (Liquidus), °C 640
640
Melting Onset (Solidus), °C 540
620
Specific Heat Capacity, J/kg-K 870
900
Thermal Conductivity, W/m-K 120
190
Thermal Expansion, µm/m-K 22
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
49
Electrical Conductivity: Equal Weight (Specific), % IACS 85
160

Otherwise Unclassified Properties

Base Metal Price, % relative 11
9.5
Density, g/cm3 3.1
2.7
Embodied Carbon, kg CO2/kg material 8.2
8.5
Embodied Energy, MJ/kg 150
160
Embodied Water, L/kg 1130
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 20
24
Resilience: Unit (Modulus of Resilience), kJ/m3 550
360
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 44
50
Strength to Weight: Axial, points 38
29
Strength to Weight: Bending, points 40
35
Thermal Diffusivity, mm2/s 45
77
Thermal Shock Resistance, points 19
13

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 91.5 to 93.8
96.5 to 99.1
Chromium (Cr), % 0
0 to 0.3
Copper (Cu), % 5.8 to 6.8
0 to 0.3
Iron (Fe), % 0 to 0.3
0 to 0.35
Magnesium (Mg), % 0 to 0.020
0.4 to 0.7
Manganese (Mn), % 0.2 to 0.4
0 to 0.3
Silicon (Si), % 0 to 0.2
0.5 to 0.9
Titanium (Ti), % 0.020 to 0.1
0 to 0.1
Vanadium (V), % 0.050 to 0.15
0.050 to 0.2
Zinc (Zn), % 0 to 0.1
0 to 0.2
Zirconium (Zr), % 0.1 to 0.25
0
Residuals, % 0 to 0.15
0 to 0.15