MakeItFrom.com
Menu (ESC)

2219-T6 Aluminum vs. 7204-T6 Aluminum

Both 2219-T6 aluminum and 7204-T6 aluminum are aluminum alloys. Both are furnished in the T6 temper. They have a moderately high 94% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 2219-T6 aluminum and the bottom bar is 7204-T6 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
70
Elongation at Break, % 5.4
11
Fatigue Strength, MPa 110
130
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
26
Shear Strength, MPa 250
220
Tensile Strength: Ultimate (UTS), MPa 420
380
Tensile Strength: Yield (Proof), MPa 280
310

Thermal Properties

Latent Heat of Fusion, J/g 390
380
Maximum Temperature: Mechanical, °C 230
210
Melting Completion (Liquidus), °C 640
640
Melting Onset (Solidus), °C 540
520
Specific Heat Capacity, J/kg-K 870
880
Thermal Conductivity, W/m-K 120
150
Thermal Expansion, µm/m-K 22
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
39
Electrical Conductivity: Equal Weight (Specific), % IACS 85
120

Otherwise Unclassified Properties

Base Metal Price, % relative 11
9.5
Density, g/cm3 3.1
2.9
Embodied Carbon, kg CO2/kg material 8.2
8.4
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1130
1140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 20
40
Resilience: Unit (Modulus of Resilience), kJ/m3 550
710
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 44
47
Strength to Weight: Axial, points 38
36
Strength to Weight: Bending, points 40
40
Thermal Diffusivity, mm2/s 45
58
Thermal Shock Resistance, points 19
16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 91.5 to 93.8
90.5 to 94.8
Chromium (Cr), % 0
0 to 0.3
Copper (Cu), % 5.8 to 6.8
0 to 0.2
Iron (Fe), % 0 to 0.3
0 to 0.35
Magnesium (Mg), % 0 to 0.020
1.0 to 2.0
Manganese (Mn), % 0.2 to 0.4
0.2 to 0.7
Silicon (Si), % 0 to 0.2
0 to 0.3
Titanium (Ti), % 0.020 to 0.1
0 to 0.2
Vanadium (V), % 0.050 to 0.15
0 to 0.1
Zinc (Zn), % 0 to 0.1
4.0 to 5.0
Zirconium (Zr), % 0.1 to 0.25
0 to 0.25
Residuals, % 0 to 0.15
0 to 0.15