MakeItFrom.com
Menu (ESC)

2219-T6 Aluminum vs. 771.0-T6 Aluminum

Both 2219-T6 aluminum and 771.0-T6 aluminum are aluminum alloys. Both are furnished in the T6 temper. They have a moderately high 92% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is 2219-T6 aluminum and the bottom bar is 771.0-T6 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 110
90
Elastic (Young's, Tensile) Modulus, GPa 72
70
Elongation at Break, % 5.4
6.5
Fatigue Strength, MPa 110
99
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 27
26
Tensile Strength: Ultimate (UTS), MPa 420
320
Tensile Strength: Yield (Proof), MPa 280
270

Thermal Properties

Latent Heat of Fusion, J/g 390
380
Maximum Temperature: Mechanical, °C 230
180
Melting Completion (Liquidus), °C 640
630
Melting Onset (Solidus), °C 540
620
Specific Heat Capacity, J/kg-K 870
870
Thermal Conductivity, W/m-K 120
140
Thermal Expansion, µm/m-K 22
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
27
Electrical Conductivity: Equal Weight (Specific), % IACS 85
82

Otherwise Unclassified Properties

Base Metal Price, % relative 11
9.5
Density, g/cm3 3.1
3.0
Embodied Carbon, kg CO2/kg material 8.2
8.0
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1130
1130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 20
20
Resilience: Unit (Modulus of Resilience), kJ/m3 550
530
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 44
46
Strength to Weight: Axial, points 38
30
Strength to Weight: Bending, points 40
35
Thermal Diffusivity, mm2/s 45
54
Thermal Shock Resistance, points 19
14

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 91.5 to 93.8
90.5 to 92.5
Chromium (Cr), % 0
0.060 to 0.2
Copper (Cu), % 5.8 to 6.8
0 to 0.1
Iron (Fe), % 0 to 0.3
0 to 0.15
Magnesium (Mg), % 0 to 0.020
0.8 to 1.0
Manganese (Mn), % 0.2 to 0.4
0 to 0.1
Silicon (Si), % 0 to 0.2
0 to 0.15
Titanium (Ti), % 0.020 to 0.1
0.1 to 0.2
Vanadium (V), % 0.050 to 0.15
0
Zinc (Zn), % 0 to 0.1
6.5 to 7.5
Zirconium (Zr), % 0.1 to 0.25
0
Residuals, % 0 to 0.15
0 to 0.15