MakeItFrom.com
Menu (ESC)

2219-T62 Aluminum vs. 6063-T62 Aluminum

Both 2219-T62 aluminum and 6063-T62 aluminum are aluminum alloys. Both are furnished in the T62 temper. They have a moderately high 93% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 2219-T62 aluminum and the bottom bar is 6063-T62 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
68
Elongation at Break, % 8.5
9.1
Fatigue Strength, MPa 110
82
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
26
Shear Strength, MPa 250
150
Tensile Strength: Ultimate (UTS), MPa 420
250
Tensile Strength: Yield (Proof), MPa 290
210

Thermal Properties

Latent Heat of Fusion, J/g 390
400
Maximum Temperature: Mechanical, °C 230
160
Melting Completion (Liquidus), °C 640
650
Melting Onset (Solidus), °C 540
620
Specific Heat Capacity, J/kg-K 870
900
Thermal Conductivity, W/m-K 120
200
Thermal Expansion, µm/m-K 22
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
53
Electrical Conductivity: Equal Weight (Specific), % IACS 86
180

Otherwise Unclassified Properties

Base Metal Price, % relative 11
9.5
Density, g/cm3 3.1
2.7
Embodied Carbon, kg CO2/kg material 8.2
8.3
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1130
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 32
22
Resilience: Unit (Modulus of Resilience), kJ/m3 570
320
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 44
50
Strength to Weight: Axial, points 37
26
Strength to Weight: Bending, points 40
33
Thermal Diffusivity, mm2/s 45
82
Thermal Shock Resistance, points 19
11

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 91.5 to 93.8
97.5 to 99.4
Chromium (Cr), % 0
0 to 0.1
Copper (Cu), % 5.8 to 6.8
0 to 0.1
Iron (Fe), % 0 to 0.3
0 to 0.35
Magnesium (Mg), % 0 to 0.020
0.45 to 0.9
Manganese (Mn), % 0.2 to 0.4
0 to 0.1
Silicon (Si), % 0 to 0.2
0.2 to 0.6
Titanium (Ti), % 0.020 to 0.1
0 to 0.1
Vanadium (V), % 0.050 to 0.15
0
Zinc (Zn), % 0 to 0.1
0 to 0.1
Zirconium (Zr), % 0.1 to 0.25
0
Residuals, % 0 to 0.15
0 to 0.15