MakeItFrom.com
Menu (ESC)

224.0 Aluminum vs. 2195 Aluminum

Both 224.0 aluminum and 2195 aluminum are aluminum alloys. They have a very high 98% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 224.0 aluminum and the bottom bar is 2195 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
69
Elongation at Break, % 4.0 to 10
9.3
Fatigue Strength, MPa 86 to 120
190
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
26
Tensile Strength: Ultimate (UTS), MPa 380 to 420
590
Tensile Strength: Yield (Proof), MPa 280 to 330
560

Thermal Properties

Latent Heat of Fusion, J/g 390
390
Maximum Temperature: Mechanical, °C 220
210
Melting Completion (Liquidus), °C 650
660
Melting Onset (Solidus), °C 550
550
Specific Heat Capacity, J/kg-K 870
900
Thermal Conductivity, W/m-K 120
130
Thermal Expansion, µm/m-K 23
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
34
Electrical Conductivity: Equal Weight (Specific), % IACS 95
100

Otherwise Unclassified Properties

Base Metal Price, % relative 11
31
Density, g/cm3 3.0
3.0
Embodied Carbon, kg CO2/kg material 8.3
8.6
Embodied Energy, MJ/kg 160
160
Embodied Water, L/kg 1150
1470

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 16 to 35
54
Resilience: Unit (Modulus of Resilience), kJ/m3 540 to 770
2290
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 45
46
Strength to Weight: Axial, points 35 to 38
55
Strength to Weight: Bending, points 38 to 41
53
Thermal Diffusivity, mm2/s 47
49
Thermal Shock Resistance, points 17 to 18
26

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 93 to 95.2
91.9 to 94.9
Copper (Cu), % 4.5 to 5.5
3.7 to 4.3
Iron (Fe), % 0 to 0.1
0 to 0.15
Lithium (Li), % 0
0.8 to 1.2
Magnesium (Mg), % 0
0.25 to 0.8
Manganese (Mn), % 0.2 to 0.5
0 to 0.25
Silicon (Si), % 0 to 0.060
0 to 0.12
Silver (Ag), % 0
0.25 to 0.6
Titanium (Ti), % 0 to 0.35
0 to 0.1
Vanadium (V), % 0.050 to 0.15
0
Zinc (Zn), % 0
0 to 0.25
Zirconium (Zr), % 0.1 to 0.25
0.080 to 0.16
Residuals, % 0 to 0.1
0 to 0.15