MakeItFrom.com
Menu (ESC)

224.0 Aluminum vs. 383.0 Aluminum

Both 224.0 aluminum and 383.0 aluminum are aluminum alloys. They have 87% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is 224.0 aluminum and the bottom bar is 383.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
73
Elongation at Break, % 4.0 to 10
3.5
Fatigue Strength, MPa 86 to 120
150
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
28
Tensile Strength: Ultimate (UTS), MPa 380 to 420
280
Tensile Strength: Yield (Proof), MPa 280 to 330
150

Thermal Properties

Latent Heat of Fusion, J/g 390
540
Maximum Temperature: Mechanical, °C 220
170
Melting Completion (Liquidus), °C 650
580
Melting Onset (Solidus), °C 550
540
Specific Heat Capacity, J/kg-K 870
880
Thermal Conductivity, W/m-K 120
96
Thermal Expansion, µm/m-K 23
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
23
Electrical Conductivity: Equal Weight (Specific), % IACS 95
74

Otherwise Unclassified Properties

Base Metal Price, % relative 11
10
Density, g/cm3 3.0
2.8
Embodied Carbon, kg CO2/kg material 8.3
7.5
Embodied Energy, MJ/kg 160
140
Embodied Water, L/kg 1150
1030

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 16 to 35
8.2
Resilience: Unit (Modulus of Resilience), kJ/m3 540 to 770
150
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 45
50
Strength to Weight: Axial, points 35 to 38
28
Strength to Weight: Bending, points 38 to 41
34
Thermal Diffusivity, mm2/s 47
39
Thermal Shock Resistance, points 17 to 18
13

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 93 to 95.2
79.7 to 88.5
Copper (Cu), % 4.5 to 5.5
2.0 to 3.0
Iron (Fe), % 0 to 0.1
0 to 1.3
Magnesium (Mg), % 0
0 to 0.1
Manganese (Mn), % 0.2 to 0.5
0 to 0.5
Nickel (Ni), % 0
0 to 0.3
Silicon (Si), % 0 to 0.060
9.5 to 11.5
Tin (Sn), % 0
0 to 0.15
Titanium (Ti), % 0 to 0.35
0
Vanadium (V), % 0.050 to 0.15
0
Zinc (Zn), % 0
0 to 3.0
Zirconium (Zr), % 0.1 to 0.25
0
Residuals, % 0 to 0.1
0 to 0.5