MakeItFrom.com
Menu (ESC)

224.0 Aluminum vs. 4145 Aluminum

Both 224.0 aluminum and 4145 aluminum are aluminum alloys. They have 89% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 224.0 aluminum and the bottom bar is 4145 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
73
Elongation at Break, % 4.0 to 10
2.2
Fatigue Strength, MPa 86 to 120
48
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
28
Tensile Strength: Ultimate (UTS), MPa 380 to 420
120
Tensile Strength: Yield (Proof), MPa 280 to 330
68

Thermal Properties

Latent Heat of Fusion, J/g 390
540
Maximum Temperature: Mechanical, °C 220
160
Melting Completion (Liquidus), °C 650
590
Melting Onset (Solidus), °C 550
520
Specific Heat Capacity, J/kg-K 870
880
Thermal Conductivity, W/m-K 120
100
Thermal Expansion, µm/m-K 23
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
26
Electrical Conductivity: Equal Weight (Specific), % IACS 95
84

Otherwise Unclassified Properties

Base Metal Price, % relative 11
10
Density, g/cm3 3.0
2.8
Embodied Carbon, kg CO2/kg material 8.3
7.6
Embodied Energy, MJ/kg 160
140
Embodied Water, L/kg 1150
1040

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 16 to 35
2.3
Resilience: Unit (Modulus of Resilience), kJ/m3 540 to 770
31
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 45
50
Strength to Weight: Axial, points 35 to 38
12
Strength to Weight: Bending, points 38 to 41
19
Thermal Diffusivity, mm2/s 47
42
Thermal Shock Resistance, points 17 to 18
5.5

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 93 to 95.2
83 to 87.4
Chromium (Cr), % 0
0 to 0.15
Copper (Cu), % 4.5 to 5.5
3.3 to 4.7
Iron (Fe), % 0 to 0.1
0 to 0.8
Magnesium (Mg), % 0
0 to 0.15
Manganese (Mn), % 0.2 to 0.5
0 to 0.15
Silicon (Si), % 0 to 0.060
9.3 to 10.7
Titanium (Ti), % 0 to 0.35
0
Vanadium (V), % 0.050 to 0.15
0
Zinc (Zn), % 0
0 to 0.2
Zirconium (Zr), % 0.1 to 0.25
0
Residuals, % 0 to 0.1
0 to 0.15