MakeItFrom.com
Menu (ESC)

224.0 Aluminum vs. ASTM A387 Grade 9 Steel

224.0 aluminum belongs to the aluminum alloys classification, while ASTM A387 grade 9 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 224.0 aluminum and the bottom bar is ASTM A387 grade 9 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
190
Elongation at Break, % 4.0 to 10
20 to 21
Fatigue Strength, MPa 86 to 120
160 to 240
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
75
Tensile Strength: Ultimate (UTS), MPa 380 to 420
500 to 600
Tensile Strength: Yield (Proof), MPa 280 to 330
230 to 350

Thermal Properties

Latent Heat of Fusion, J/g 390
270
Maximum Temperature: Mechanical, °C 220
600
Melting Completion (Liquidus), °C 650
1460
Melting Onset (Solidus), °C 550
1410
Specific Heat Capacity, J/kg-K 870
470
Thermal Conductivity, W/m-K 120
26
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
9.0
Electrical Conductivity: Equal Weight (Specific), % IACS 95
10

Otherwise Unclassified Properties

Base Metal Price, % relative 11
6.5
Density, g/cm3 3.0
7.8
Embodied Carbon, kg CO2/kg material 8.3
2.1
Embodied Energy, MJ/kg 160
28
Embodied Water, L/kg 1150
87

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 16 to 35
83 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 540 to 770
140 to 310
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 45
25
Strength to Weight: Axial, points 35 to 38
18 to 21
Strength to Weight: Bending, points 38 to 41
18 to 20
Thermal Diffusivity, mm2/s 47
6.9
Thermal Shock Resistance, points 17 to 18
14 to 17

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 93 to 95.2
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
8.0 to 10
Copper (Cu), % 4.5 to 5.5
0
Iron (Fe), % 0 to 0.1
87.1 to 90.8
Manganese (Mn), % 0.2 to 0.5
0.3 to 0.6
Molybdenum (Mo), % 0
0.9 to 1.1
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.060
0 to 1.0
Sulfur (S), % 0
0 to 0.025
Titanium (Ti), % 0 to 0.35
0
Vanadium (V), % 0.050 to 0.15
0 to 0.040
Zirconium (Zr), % 0.1 to 0.25
0
Residuals, % 0 to 0.1
0