MakeItFrom.com
Menu (ESC)

224.0 Aluminum vs. EN 1.4911 Stainless Steel

224.0 aluminum belongs to the aluminum alloys classification, while EN 1.4911 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 224.0 aluminum and the bottom bar is EN 1.4911 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
200
Elongation at Break, % 4.0 to 10
11
Fatigue Strength, MPa 86 to 120
530
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
76
Tensile Strength: Ultimate (UTS), MPa 380 to 420
1070
Tensile Strength: Yield (Proof), MPa 280 to 330
970

Thermal Properties

Latent Heat of Fusion, J/g 390
270
Maximum Temperature: Mechanical, °C 220
700
Melting Completion (Liquidus), °C 650
1450
Melting Onset (Solidus), °C 550
1410
Specific Heat Capacity, J/kg-K 870
470
Thermal Conductivity, W/m-K 120
20
Thermal Expansion, µm/m-K 23
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
2.7
Electrical Conductivity: Equal Weight (Specific), % IACS 95
3.0

Otherwise Unclassified Properties

Base Metal Price, % relative 11
20
Density, g/cm3 3.0
7.9
Embodied Carbon, kg CO2/kg material 8.3
3.4
Embodied Energy, MJ/kg 160
49
Embodied Water, L/kg 1150
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 16 to 35
120
Resilience: Unit (Modulus of Resilience), kJ/m3 540 to 770
2410
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 45
25
Strength to Weight: Axial, points 35 to 38
38
Strength to Weight: Bending, points 38 to 41
30
Thermal Diffusivity, mm2/s 47
5.4
Thermal Shock Resistance, points 17 to 18
37

Alloy Composition

Aluminum (Al), % 93 to 95.2
0
Boron (B), % 0
0.0050 to 0.015
Carbon (C), % 0
0.050 to 0.12
Chromium (Cr), % 0
9.8 to 11.2
Cobalt (Co), % 0
5.0 to 7.0
Copper (Cu), % 4.5 to 5.5
0
Iron (Fe), % 0 to 0.1
75.7 to 83.8
Manganese (Mn), % 0.2 to 0.5
0.3 to 1.3
Molybdenum (Mo), % 0
0.5 to 1.0
Nickel (Ni), % 0
0.2 to 1.2
Niobium (Nb), % 0
0.2 to 0.5
Nitrogen (N), % 0
0 to 0.035
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.060
0.1 to 0.8
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.35
0
Tungsten (W), % 0
0 to 0.7
Vanadium (V), % 0.050 to 0.15
0.1 to 0.4
Zirconium (Zr), % 0.1 to 0.25
0
Residuals, % 0 to 0.1
0