MakeItFrom.com
Menu (ESC)

224.0 Aluminum vs. EN AC-45100 Aluminum

Both 224.0 aluminum and EN AC-45100 aluminum are aluminum alloys. They have a moderately high 94% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 224.0 aluminum and the bottom bar is EN AC-45100 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
72
Elongation at Break, % 4.0 to 10
1.0 to 2.8
Fatigue Strength, MPa 86 to 120
82 to 99
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
27
Tensile Strength: Ultimate (UTS), MPa 380 to 420
300 to 360
Tensile Strength: Yield (Proof), MPa 280 to 330
210 to 320

Thermal Properties

Latent Heat of Fusion, J/g 390
470
Maximum Temperature: Mechanical, °C 220
170
Melting Completion (Liquidus), °C 650
630
Melting Onset (Solidus), °C 550
550
Specific Heat Capacity, J/kg-K 870
890
Thermal Conductivity, W/m-K 120
140
Thermal Expansion, µm/m-K 23
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
30
Electrical Conductivity: Equal Weight (Specific), % IACS 95
95

Otherwise Unclassified Properties

Base Metal Price, % relative 11
10
Density, g/cm3 3.0
2.8
Embodied Carbon, kg CO2/kg material 8.3
7.9
Embodied Energy, MJ/kg 160
150
Embodied Water, L/kg 1150
1100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 16 to 35
3.5 to 7.6
Resilience: Unit (Modulus of Resilience), kJ/m3 540 to 770
290 to 710
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 45
49
Strength to Weight: Axial, points 35 to 38
30 to 35
Strength to Weight: Bending, points 38 to 41
35 to 39
Thermal Diffusivity, mm2/s 47
54
Thermal Shock Resistance, points 17 to 18
14 to 16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 93 to 95.2
88 to 92.8
Copper (Cu), % 4.5 to 5.5
2.6 to 3.6
Iron (Fe), % 0 to 0.1
0 to 0.6
Lead (Pb), % 0
0 to 0.1
Magnesium (Mg), % 0
0.15 to 0.45
Manganese (Mn), % 0.2 to 0.5
0 to 0.55
Nickel (Ni), % 0
0 to 0.1
Silicon (Si), % 0 to 0.060
4.5 to 6.0
Tin (Sn), % 0
0 to 0.050
Titanium (Ti), % 0 to 0.35
0 to 0.25
Vanadium (V), % 0.050 to 0.15
0
Zinc (Zn), % 0
0 to 0.2
Zirconium (Zr), % 0.1 to 0.25
0
Residuals, % 0 to 0.1
0 to 0.15