MakeItFrom.com
Menu (ESC)

224.0 Aluminum vs. EN AC-48100 Aluminum

Both 224.0 aluminum and EN AC-48100 aluminum are aluminum alloys. They have 81% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 224.0 aluminum and the bottom bar is EN AC-48100 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
76
Elongation at Break, % 4.0 to 10
1.1
Fatigue Strength, MPa 86 to 120
120 to 130
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
29
Tensile Strength: Ultimate (UTS), MPa 380 to 420
240 to 330
Tensile Strength: Yield (Proof), MPa 280 to 330
190 to 300

Thermal Properties

Latent Heat of Fusion, J/g 390
640
Maximum Temperature: Mechanical, °C 220
170
Melting Completion (Liquidus), °C 650
580
Melting Onset (Solidus), °C 550
470
Specific Heat Capacity, J/kg-K 870
880
Thermal Conductivity, W/m-K 120
130
Thermal Expansion, µm/m-K 23
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
27
Electrical Conductivity: Equal Weight (Specific), % IACS 95
87

Otherwise Unclassified Properties

Base Metal Price, % relative 11
11
Density, g/cm3 3.0
2.8
Embodied Carbon, kg CO2/kg material 8.3
7.3
Embodied Energy, MJ/kg 160
130
Embodied Water, L/kg 1150
940

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 16 to 35
2.3 to 3.6
Resilience: Unit (Modulus of Resilience), kJ/m3 540 to 770
250 to 580
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 45
51
Strength to Weight: Axial, points 35 to 38
24 to 33
Strength to Weight: Bending, points 38 to 41
31 to 38
Thermal Diffusivity, mm2/s 47
55
Thermal Shock Resistance, points 17 to 18
11 to 16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 93 to 95.2
72.1 to 79.8
Copper (Cu), % 4.5 to 5.5
4.0 to 5.0
Iron (Fe), % 0 to 0.1
0 to 1.3
Magnesium (Mg), % 0
0.25 to 0.65
Manganese (Mn), % 0.2 to 0.5
0 to 0.5
Nickel (Ni), % 0
0 to 0.3
Silicon (Si), % 0 to 0.060
16 to 18
Tin (Sn), % 0
0 to 0.15
Titanium (Ti), % 0 to 0.35
0 to 0.25
Vanadium (V), % 0.050 to 0.15
0
Zinc (Zn), % 0
0 to 1.5
Zirconium (Zr), % 0.1 to 0.25
0
Residuals, % 0 to 0.1
0 to 0.25