MakeItFrom.com
Menu (ESC)

224.0 Aluminum vs. EN AC-51400 Aluminum

Both 224.0 aluminum and EN AC-51400 aluminum are aluminum alloys. They have a moderately high 93% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 224.0 aluminum and the bottom bar is EN AC-51400 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
67
Elongation at Break, % 4.0 to 10
3.4
Fatigue Strength, MPa 86 to 120
85
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
25
Tensile Strength: Ultimate (UTS), MPa 380 to 420
190
Tensile Strength: Yield (Proof), MPa 280 to 330
120

Thermal Properties

Latent Heat of Fusion, J/g 390
400
Maximum Temperature: Mechanical, °C 220
170
Melting Completion (Liquidus), °C 650
640
Melting Onset (Solidus), °C 550
600
Specific Heat Capacity, J/kg-K 870
910
Thermal Conductivity, W/m-K 120
110
Thermal Expansion, µm/m-K 23
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
31
Electrical Conductivity: Equal Weight (Specific), % IACS 95
110

Otherwise Unclassified Properties

Base Metal Price, % relative 11
9.5
Density, g/cm3 3.0
2.7
Embodied Carbon, kg CO2/kg material 8.3
9.1
Embodied Energy, MJ/kg 160
150
Embodied Water, L/kg 1150
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 16 to 35
5.6
Resilience: Unit (Modulus of Resilience), kJ/m3 540 to 770
110
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 45
51
Strength to Weight: Axial, points 35 to 38
20
Strength to Weight: Bending, points 38 to 41
28
Thermal Diffusivity, mm2/s 47
46
Thermal Shock Resistance, points 17 to 18
8.6

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 93 to 95.2
90.5 to 95.5
Copper (Cu), % 4.5 to 5.5
0 to 0.050
Iron (Fe), % 0 to 0.1
0 to 0.55
Magnesium (Mg), % 0
4.5 to 6.5
Manganese (Mn), % 0.2 to 0.5
0 to 0.45
Silicon (Si), % 0 to 0.060
0 to 1.5
Titanium (Ti), % 0 to 0.35
0 to 0.2
Vanadium (V), % 0.050 to 0.15
0
Zinc (Zn), % 0
0 to 0.1
Zirconium (Zr), % 0.1 to 0.25
0
Residuals, % 0 to 0.1
0 to 0.15