MakeItFrom.com
Menu (ESC)

224.0 Aluminum vs. Grade 28 Titanium

224.0 aluminum belongs to the aluminum alloys classification, while grade 28 titanium belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 224.0 aluminum and the bottom bar is grade 28 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
110
Elongation at Break, % 4.0 to 10
11 to 17
Fatigue Strength, MPa 86 to 120
330 to 480
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 27
40
Tensile Strength: Ultimate (UTS), MPa 380 to 420
690 to 980
Tensile Strength: Yield (Proof), MPa 280 to 330
540 to 810

Thermal Properties

Latent Heat of Fusion, J/g 390
410
Maximum Temperature: Mechanical, °C 220
330
Melting Completion (Liquidus), °C 650
1640
Melting Onset (Solidus), °C 550
1590
Specific Heat Capacity, J/kg-K 870
550
Thermal Conductivity, W/m-K 120
8.3
Thermal Expansion, µm/m-K 23
9.9

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
1.3
Electrical Conductivity: Equal Weight (Specific), % IACS 95
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 11
36
Density, g/cm3 3.0
4.5
Embodied Carbon, kg CO2/kg material 8.3
37
Embodied Energy, MJ/kg 160
600
Embodied Water, L/kg 1150
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 16 to 35
87 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 540 to 770
1370 to 3100
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 45
35
Strength to Weight: Axial, points 35 to 38
43 to 61
Strength to Weight: Bending, points 38 to 41
39 to 49
Thermal Diffusivity, mm2/s 47
3.4
Thermal Shock Resistance, points 17 to 18
47 to 66

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 93 to 95.2
2.5 to 3.5
Carbon (C), % 0
0 to 0.080
Copper (Cu), % 4.5 to 5.5
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 0.1
0 to 0.25
Manganese (Mn), % 0.2 to 0.5
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.15
Ruthenium (Ru), % 0
0.080 to 0.14
Silicon (Si), % 0 to 0.060
0
Titanium (Ti), % 0 to 0.35
92.4 to 95.4
Vanadium (V), % 0.050 to 0.15
2.0 to 3.0
Zirconium (Zr), % 0.1 to 0.25
0
Residuals, % 0 to 0.1
0 to 0.4