MakeItFrom.com
Menu (ESC)

238.0 Aluminum vs. 6005A Aluminum

Both 238.0 aluminum and 6005A aluminum are aluminum alloys. They have 85% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 238.0 aluminum and the bottom bar is 6005A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 76
69
Elongation at Break, % 1.5
8.6 to 17
Fatigue Strength, MPa 110
55 to 110
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 28
26
Tensile Strength: Ultimate (UTS), MPa 210
190 to 300
Tensile Strength: Yield (Proof), MPa 170
100 to 270

Thermal Properties

Latent Heat of Fusion, J/g 430
410
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 600
650
Melting Onset (Solidus), °C 510
600
Specific Heat Capacity, J/kg-K 840
900
Thermal Conductivity, W/m-K 100
180 to 190
Thermal Expansion, µm/m-K 21
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
47 to 50
Electrical Conductivity: Equal Weight (Specific), % IACS 67
150 to 170

Otherwise Unclassified Properties

Base Metal Price, % relative 12
9.5
Density, g/cm3 3.4
2.7
Embodied Carbon, kg CO2/kg material 7.4
8.3
Embodied Energy, MJ/kg 140
150
Embodied Water, L/kg 1040
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.9
24 to 29
Resilience: Unit (Modulus of Resilience), kJ/m3 180
76 to 530
Stiffness to Weight: Axial, points 12
14
Stiffness to Weight: Bending, points 42
50
Strength to Weight: Axial, points 17
20 to 30
Strength to Weight: Bending, points 23
27 to 36
Thermal Diffusivity, mm2/s 37
72 to 79
Thermal Shock Resistance, points 9.1
8.6 to 13

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 81.9 to 84.9
96.5 to 99.1
Chromium (Cr), % 0
0 to 0.3
Copper (Cu), % 9.5 to 10.5
0 to 0.3
Iron (Fe), % 1.0 to 1.5
0 to 0.35
Magnesium (Mg), % 0 to 0.25
0.4 to 0.7
Manganese (Mn), % 0
0 to 0.5
Silicon (Si), % 3.6 to 4.4
0.5 to 0.9
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 1.0 to 1.5
0 to 0.2
Residuals, % 0
0 to 0.15