MakeItFrom.com
Menu (ESC)

240.0 Aluminum vs. 4007 Aluminum

Both 240.0 aluminum and 4007 aluminum are aluminum alloys. They have 86% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 240.0 aluminum and the bottom bar is 4007 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
71
Elongation at Break, % 1.0
5.1 to 23
Fatigue Strength, MPa 140
46 to 88
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
27
Tensile Strength: Ultimate (UTS), MPa 240
130 to 160
Tensile Strength: Yield (Proof), MPa 200
50 to 120

Thermal Properties

Latent Heat of Fusion, J/g 380
410
Maximum Temperature: Mechanical, °C 180
170
Melting Completion (Liquidus), °C 600
650
Melting Onset (Solidus), °C 520
590
Specific Heat Capacity, J/kg-K 860
890
Thermal Conductivity, W/m-K 96
170
Thermal Expansion, µm/m-K 22
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 23
42
Electrical Conductivity: Equal Weight (Specific), % IACS 65
140

Otherwise Unclassified Properties

Base Metal Price, % relative 12
9.5
Density, g/cm3 3.2
2.8
Embodied Carbon, kg CO2/kg material 8.7
8.1
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1100
1160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.2
7.4 to 23
Resilience: Unit (Modulus of Resilience), kJ/m3 280
18 to 110
Stiffness to Weight: Axial, points 12
14
Stiffness to Weight: Bending, points 43
49
Strength to Weight: Axial, points 20
12 to 15
Strength to Weight: Bending, points 26
20 to 23
Thermal Diffusivity, mm2/s 35
67
Thermal Shock Resistance, points 11
5.5 to 6.7

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 81.7 to 86.9
94.1 to 97.6
Chromium (Cr), % 0
0.050 to 0.25
Cobalt (Co), % 0
0 to 0.050
Copper (Cu), % 7.0 to 9.0
0 to 0.2
Iron (Fe), % 0 to 0.5
0.4 to 1.0
Magnesium (Mg), % 5.5 to 6.5
0 to 0.2
Manganese (Mn), % 0.3 to 0.7
0.8 to 1.5
Nickel (Ni), % 0.3 to 0.7
0.15 to 0.7
Silicon (Si), % 0 to 0.5
1.0 to 1.7
Titanium (Ti), % 0 to 0.2
0 to 0.1
Zinc (Zn), % 0 to 0.1
0 to 0.1
Residuals, % 0 to 0.15
0 to 0.15