MakeItFrom.com
Menu (ESC)

240.0 Aluminum vs. 7108A Aluminum

Both 240.0 aluminum and 7108A aluminum are aluminum alloys. They have 86% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 240.0 aluminum and the bottom bar is 7108A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
69
Elongation at Break, % 1.0
11 to 13
Fatigue Strength, MPa 140
120 to 130
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
26
Tensile Strength: Ultimate (UTS), MPa 240
350
Tensile Strength: Yield (Proof), MPa 200
290 to 300

Thermal Properties

Latent Heat of Fusion, J/g 380
380
Maximum Temperature: Mechanical, °C 180
210
Melting Completion (Liquidus), °C 600
630
Melting Onset (Solidus), °C 520
520
Specific Heat Capacity, J/kg-K 860
870
Thermal Conductivity, W/m-K 96
150
Thermal Expansion, µm/m-K 22
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 23
36
Electrical Conductivity: Equal Weight (Specific), % IACS 65
110

Otherwise Unclassified Properties

Base Metal Price, % relative 12
10
Density, g/cm3 3.2
2.9
Embodied Carbon, kg CO2/kg material 8.7
8.3
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1100
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.2
38 to 44
Resilience: Unit (Modulus of Resilience), kJ/m3 280
610 to 640
Stiffness to Weight: Axial, points 12
13
Stiffness to Weight: Bending, points 43
47
Strength to Weight: Axial, points 20
33 to 34
Strength to Weight: Bending, points 26
38
Thermal Diffusivity, mm2/s 35
59
Thermal Shock Resistance, points 11
15 to 16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 81.7 to 86.9
91.6 to 94.4
Chromium (Cr), % 0
0 to 0.040
Copper (Cu), % 7.0 to 9.0
0 to 0.050
Gallium (Ga), % 0
0 to 0.030
Iron (Fe), % 0 to 0.5
0 to 0.3
Magnesium (Mg), % 5.5 to 6.5
0.7 to 1.5
Manganese (Mn), % 0.3 to 0.7
0 to 0.050
Nickel (Ni), % 0.3 to 0.7
0
Silicon (Si), % 0 to 0.5
0 to 0.2
Titanium (Ti), % 0 to 0.2
0 to 0.030
Zinc (Zn), % 0 to 0.1
4.8 to 5.8
Zirconium (Zr), % 0
0.15 to 0.25
Residuals, % 0 to 0.15
0 to 0.15