MakeItFrom.com
Menu (ESC)

240.0 Aluminum vs. N06035 Nickel

240.0 aluminum belongs to the aluminum alloys classification, while N06035 nickel belongs to the nickel alloys. There are 25 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 240.0 aluminum and the bottom bar is N06035 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
210
Elongation at Break, % 1.0
34
Fatigue Strength, MPa 140
200
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
84
Tensile Strength: Ultimate (UTS), MPa 240
660
Tensile Strength: Yield (Proof), MPa 200
270

Thermal Properties

Latent Heat of Fusion, J/g 380
340
Maximum Temperature: Mechanical, °C 180
1030
Melting Completion (Liquidus), °C 600
1440
Melting Onset (Solidus), °C 520
1390
Specific Heat Capacity, J/kg-K 860
450
Thermal Expansion, µm/m-K 22
13

Otherwise Unclassified Properties

Base Metal Price, % relative 12
60
Density, g/cm3 3.2
8.4
Embodied Carbon, kg CO2/kg material 8.7
10
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1100
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.2
180
Resilience: Unit (Modulus of Resilience), kJ/m3 280
170
Stiffness to Weight: Axial, points 12
14
Stiffness to Weight: Bending, points 43
24
Strength to Weight: Axial, points 20
22
Strength to Weight: Bending, points 26
20
Thermal Shock Resistance, points 11
17

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 81.7 to 86.9
0 to 0.4
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
32.3 to 34.3
Cobalt (Co), % 0
0 to 1.0
Copper (Cu), % 7.0 to 9.0
0 to 0.3
Iron (Fe), % 0 to 0.5
0 to 2.0
Magnesium (Mg), % 5.5 to 6.5
0
Manganese (Mn), % 0.3 to 0.7
0 to 0.5
Molybdenum (Mo), % 0
7.6 to 9.0
Nickel (Ni), % 0.3 to 0.7
51.1 to 60.2
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.5
0 to 0.6
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.2
0
Tungsten (W), % 0
0 to 0.6
Vanadium (V), % 0
0 to 0.2
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0