MakeItFrom.com
Menu (ESC)

242.0 Aluminum vs. CC481K Bronze

242.0 aluminum belongs to the aluminum alloys classification, while CC481K bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 242.0 aluminum and the bottom bar is CC481K bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 70 to 110
90
Elastic (Young's, Tensile) Modulus, GPa 73
110
Elongation at Break, % 0.5 to 1.5
4.5
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 27
40
Tensile Strength: Ultimate (UTS), MPa 180 to 290
350
Tensile Strength: Yield (Proof), MPa 120 to 220
180

Thermal Properties

Latent Heat of Fusion, J/g 390
190
Maximum Temperature: Mechanical, °C 210
170
Melting Completion (Liquidus), °C 640
1000
Melting Onset (Solidus), °C 530
880
Specific Heat Capacity, J/kg-K 870
370
Thermal Conductivity, W/m-K 130 to 170
64
Thermal Expansion, µm/m-K 22
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33 to 44
10
Electrical Conductivity: Equal Weight (Specific), % IACS 96 to 130
10

Otherwise Unclassified Properties

Base Metal Price, % relative 12
35
Density, g/cm3 3.1
8.7
Embodied Carbon, kg CO2/kg material 8.3
3.7
Embodied Energy, MJ/kg 150
60
Embodied Water, L/kg 1130
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.3 to 3.4
13
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 340
150
Stiffness to Weight: Axial, points 13
6.9
Stiffness to Weight: Bending, points 45
18
Strength to Weight: Axial, points 16 to 26
11
Strength to Weight: Bending, points 23 to 32
13
Thermal Diffusivity, mm2/s 50 to 62
20
Thermal Shock Resistance, points 8.0 to 13
13

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 88.4 to 93.6
0 to 0.010
Antimony (Sb), % 0
0 to 0.050
Chromium (Cr), % 0 to 0.25
0
Copper (Cu), % 3.5 to 4.5
87 to 89.5
Iron (Fe), % 0 to 1.0
0 to 0.1
Lead (Pb), % 0
0 to 0.25
Magnesium (Mg), % 1.2 to 1.8
0
Manganese (Mn), % 0 to 0.35
0 to 0.050
Nickel (Ni), % 1.7 to 2.3
0 to 0.1
Phosphorus (P), % 0
0 to 1.0
Silicon (Si), % 0 to 0.7
0 to 0.010
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0
10 to 11.5
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.35
0 to 0.5
Residuals, % 0 to 0.15
0