MakeItFrom.com
Menu (ESC)

242.0 Aluminum vs. Grade 4 Titanium

242.0 aluminum belongs to the aluminum alloys classification, while grade 4 titanium belongs to the titanium alloys. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is 242.0 aluminum and the bottom bar is grade 4 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 70 to 110
200
Elastic (Young's, Tensile) Modulus, GPa 73
110
Elongation at Break, % 0.5 to 1.5
17
Fatigue Strength, MPa 55 to 110
340
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 27
41
Shear Strength, MPa 150 to 240
390
Tensile Strength: Ultimate (UTS), MPa 180 to 290
640
Tensile Strength: Yield (Proof), MPa 120 to 220
530

Thermal Properties

Latent Heat of Fusion, J/g 390
420
Maximum Temperature: Mechanical, °C 210
320
Melting Completion (Liquidus), °C 640
1660
Melting Onset (Solidus), °C 530
1610
Specific Heat Capacity, J/kg-K 870
540
Thermal Conductivity, W/m-K 130 to 170
19
Thermal Expansion, µm/m-K 22
9.4

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33 to 44
3.1
Electrical Conductivity: Equal Weight (Specific), % IACS 96 to 130
6.3

Otherwise Unclassified Properties

Base Metal Price, % relative 12
37
Density, g/cm3 3.1
4.5
Embodied Carbon, kg CO2/kg material 8.3
31
Embodied Energy, MJ/kg 150
500
Embodied Water, L/kg 1130
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.3 to 3.4
100
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 340
1330
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 45
35
Strength to Weight: Axial, points 16 to 26
40
Strength to Weight: Bending, points 23 to 32
37
Thermal Diffusivity, mm2/s 50 to 62
7.6
Thermal Shock Resistance, points 8.0 to 13
46

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 88.4 to 93.6
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0 to 0.25
0
Copper (Cu), % 3.5 to 4.5
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 1.0
0 to 0.5
Magnesium (Mg), % 1.2 to 1.8
0
Manganese (Mn), % 0 to 0.35
0
Nickel (Ni), % 1.7 to 2.3
0
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.4
Silicon (Si), % 0 to 0.7
0
Titanium (Ti), % 0 to 0.25
98.6 to 100
Zinc (Zn), % 0 to 0.35
0
Residuals, % 0 to 0.15
0 to 0.4