MakeItFrom.com
Menu (ESC)

2618 Aluminum vs. 4004 Aluminum

Both 2618 aluminum and 4004 aluminum are aluminum alloys. They have a moderately high 90% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 2618 aluminum and the bottom bar is 4004 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
71
Elongation at Break, % 5.8
2.4
Fatigue Strength, MPa 110
42
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
27
Shear Strength, MPa 260
63
Tensile Strength: Ultimate (UTS), MPa 420
110
Tensile Strength: Yield (Proof), MPa 350
60

Thermal Properties

Latent Heat of Fusion, J/g 390
540
Maximum Temperature: Mechanical, °C 210
160
Melting Completion (Liquidus), °C 640
600
Melting Onset (Solidus), °C 550
560
Specific Heat Capacity, J/kg-K 880
910
Thermal Conductivity, W/m-K 160
130
Thermal Expansion, µm/m-K 22
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 37
33
Electrical Conductivity: Equal Weight (Specific), % IACS 110
120

Otherwise Unclassified Properties

Base Metal Price, % relative 11
9.5
Density, g/cm3 2.9
2.6
Embodied Carbon, kg CO2/kg material 8.3
8.0
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1150
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 23
2.3
Resilience: Unit (Modulus of Resilience), kJ/m3 850
25
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 47
54
Strength to Weight: Axial, points 40
12
Strength to Weight: Bending, points 42
20
Thermal Diffusivity, mm2/s 62
58
Thermal Shock Resistance, points 19
5.1

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 92.4 to 94.9
86 to 90
Copper (Cu), % 1.9 to 2.7
0 to 0.25
Iron (Fe), % 0.9 to 1.3
0 to 0.8
Magnesium (Mg), % 1.3 to 1.8
1.0 to 2.0
Manganese (Mn), % 0
0 to 0.1
Nickel (Ni), % 0.9 to 1.2
0
Silicon (Si), % 0.1 to 0.25
9.0 to 10.5
Titanium (Ti), % 0.040 to 0.1
0
Zinc (Zn), % 0 to 0.1
0 to 0.2
Residuals, % 0 to 0.15
0 to 0.15