MakeItFrom.com
Menu (ESC)

2618 Aluminum vs. EN 1.0220 Steel

2618 aluminum belongs to the aluminum alloys classification, while EN 1.0220 steel belongs to the iron alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2618 aluminum and the bottom bar is EN 1.0220 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 120
110
Elastic (Young's, Tensile) Modulus, GPa 71
190
Elongation at Break, % 5.8
23
Fatigue Strength, MPa 110
210
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
73
Shear Strength, MPa 260
250
Tensile Strength: Ultimate (UTS), MPa 420
390
Tensile Strength: Yield (Proof), MPa 350
290

Thermal Properties

Latent Heat of Fusion, J/g 390
250
Maximum Temperature: Mechanical, °C 210
400
Melting Completion (Liquidus), °C 640
1460
Melting Onset (Solidus), °C 550
1420
Specific Heat Capacity, J/kg-K 880
470
Thermal Conductivity, W/m-K 160
51
Thermal Expansion, µm/m-K 22
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 37
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 110
8.1

Otherwise Unclassified Properties

Base Metal Price, % relative 11
1.8
Density, g/cm3 2.9
7.9
Embodied Carbon, kg CO2/kg material 8.3
1.4
Embodied Energy, MJ/kg 150
18
Embodied Water, L/kg 1150
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 23
80
Resilience: Unit (Modulus of Resilience), kJ/m3 850
230
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 47
24
Strength to Weight: Axial, points 40
14
Strength to Weight: Bending, points 42
15
Thermal Diffusivity, mm2/s 62
14
Thermal Shock Resistance, points 19
12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 92.4 to 94.9
0
Carbon (C), % 0
0 to 0.16
Copper (Cu), % 1.9 to 2.7
0
Iron (Fe), % 0.9 to 1.3
98.2 to 100
Magnesium (Mg), % 1.3 to 1.8
0
Manganese (Mn), % 0
0 to 1.2
Nickel (Ni), % 0.9 to 1.2
0
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0.1 to 0.25
0 to 0.35
Sulfur (S), % 0
0 to 0.045
Titanium (Ti), % 0.040 to 0.1
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0