MakeItFrom.com
Menu (ESC)

2618A Aluminum vs. 204.0 Aluminum

Both 2618A aluminum and 204.0 aluminum are aluminum alloys. They have a very high 96% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is 2618A aluminum and the bottom bar is 204.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
71
Elongation at Break, % 4.5
5.7 to 7.8
Fatigue Strength, MPa 120
63 to 77
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
27
Tensile Strength: Ultimate (UTS), MPa 440
230 to 340
Tensile Strength: Yield (Proof), MPa 410
180 to 220

Thermal Properties

Latent Heat of Fusion, J/g 390
390
Maximum Temperature: Mechanical, °C 230
170
Melting Completion (Liquidus), °C 670
650
Melting Onset (Solidus), °C 560
580
Specific Heat Capacity, J/kg-K 880
880
Thermal Conductivity, W/m-K 150
120
Thermal Expansion, µm/m-K 23
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 37
29 to 34
Electrical Conductivity: Equal Weight (Specific), % IACS 110
87 to 100

Otherwise Unclassified Properties

Base Metal Price, % relative 11
11
Density, g/cm3 3.0
3.0
Embodied Carbon, kg CO2/kg material 8.4
8.0
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1150
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19
12 to 23
Resilience: Unit (Modulus of Resilience), kJ/m3 1180
220 to 350
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 47
46
Strength to Weight: Axial, points 41
21 to 31
Strength to Weight: Bending, points 44
28 to 36
Thermal Diffusivity, mm2/s 59
46
Thermal Shock Resistance, points 19
12 to 18

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 91.5 to 95.2
93.4 to 95.5
Copper (Cu), % 1.8 to 2.7
4.2 to 5.0
Iron (Fe), % 0.9 to 1.4
0 to 0.35
Magnesium (Mg), % 1.2 to 1.8
0.15 to 0.35
Manganese (Mn), % 0 to 0.25
0 to 0.1
Nickel (Ni), % 0.8 to 1.4
0 to 0.050
Silicon (Si), % 0.15 to 0.25
0 to 0.2
Tin (Sn), % 0
0 to 0.050
Titanium (Ti), % 0 to 0.2
0.15 to 0.3
Zinc (Zn), % 0 to 0.15
0 to 0.1
Zirconium (Zr), % 0 to 0.25
0
Residuals, % 0 to 0.15
0 to 0.15