MakeItFrom.com
Menu (ESC)

2618A Aluminum vs. 3003 Aluminum

Both 2618A aluminum and 3003 aluminum are aluminum alloys. They have a moderately high 94% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 2618A aluminum and the bottom bar is 3003 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
70
Elongation at Break, % 4.5
1.1 to 28
Fatigue Strength, MPa 120
39 to 90
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
26
Shear Strength, MPa 260
68 to 130
Tensile Strength: Ultimate (UTS), MPa 440
110 to 240
Tensile Strength: Yield (Proof), MPa 410
40 to 210

Thermal Properties

Latent Heat of Fusion, J/g 390
400
Maximum Temperature: Mechanical, °C 230
180
Melting Completion (Liquidus), °C 670
650
Melting Onset (Solidus), °C 560
640
Specific Heat Capacity, J/kg-K 880
900
Thermal Conductivity, W/m-K 150
180
Thermal Expansion, µm/m-K 23
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 37
44
Electrical Conductivity: Equal Weight (Specific), % IACS 110
140

Otherwise Unclassified Properties

Base Metal Price, % relative 11
9.5
Density, g/cm3 3.0
2.8
Embodied Carbon, kg CO2/kg material 8.4
8.1
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1150
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19
0.95 to 63
Resilience: Unit (Modulus of Resilience), kJ/m3 1180
11 to 300
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 47
50
Strength to Weight: Axial, points 41
11 to 24
Strength to Weight: Bending, points 44
18 to 30
Thermal Diffusivity, mm2/s 59
71
Thermal Shock Resistance, points 19
4.7 to 10

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 91.5 to 95.2
96.8 to 99
Copper (Cu), % 1.8 to 2.7
0.050 to 0.2
Iron (Fe), % 0.9 to 1.4
0 to 0.7
Magnesium (Mg), % 1.2 to 1.8
0
Manganese (Mn), % 0 to 0.25
1.0 to 1.5
Nickel (Ni), % 0.8 to 1.4
0
Silicon (Si), % 0.15 to 0.25
0 to 0.6
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.15
0 to 0.1
Zirconium (Zr), % 0 to 0.25
0
Residuals, % 0 to 0.15
0 to 0.15