MakeItFrom.com
Menu (ESC)

295.0 Aluminum vs. 6025 Aluminum

Both 295.0 aluminum and 6025 aluminum are aluminum alloys. They have a very high 96% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 295.0 aluminum and the bottom bar is 6025 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
70
Elongation at Break, % 2.0 to 7.2
2.8 to 10
Fatigue Strength, MPa 44 to 55
67 to 110
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
26
Shear Strength, MPa 180 to 230
110 to 140
Tensile Strength: Ultimate (UTS), MPa 230 to 280
190 to 240
Tensile Strength: Yield (Proof), MPa 100 to 220
68 to 210

Thermal Properties

Latent Heat of Fusion, J/g 400
410
Maximum Temperature: Mechanical, °C 170
160
Melting Completion (Liquidus), °C 640
650
Melting Onset (Solidus), °C 530
550
Specific Heat Capacity, J/kg-K 880
900
Thermal Conductivity, W/m-K 140
130
Thermal Expansion, µm/m-K 23
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
33
Electrical Conductivity: Equal Weight (Specific), % IACS 100
110

Otherwise Unclassified Properties

Base Metal Price, % relative 10
9.5
Density, g/cm3 3.0
2.8
Embodied Carbon, kg CO2/kg material 7.9
8.5
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1140
1160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.2 to 13
6.0 to 15
Resilience: Unit (Modulus of Resilience), kJ/m3 77 to 340
33 to 310
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
50
Strength to Weight: Axial, points 21 to 26
19 to 24
Strength to Weight: Bending, points 27 to 32
26 to 31
Thermal Diffusivity, mm2/s 54
54
Thermal Shock Resistance, points 9.8 to 12
8.2 to 10

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 91.4 to 95.3
91.7 to 96.3
Chromium (Cr), % 0
0 to 0.2
Copper (Cu), % 4.0 to 5.0
0.2 to 0.7
Iron (Fe), % 0 to 1.0
0 to 0.7
Magnesium (Mg), % 0 to 0.030
2.1 to 3.0
Manganese (Mn), % 0 to 0.35
0.6 to 1.4
Silicon (Si), % 0.7 to 1.5
0.8 to 1.5
Titanium (Ti), % 0 to 0.25
0 to 0.2
Zinc (Zn), % 0 to 0.35
0 to 0.5
Residuals, % 0 to 0.15
0 to 0.15