MakeItFrom.com
Menu (ESC)

295.0 Aluminum vs. 7003 Aluminum

Both 295.0 aluminum and 7003 aluminum are aluminum alloys. They have a moderately high 93% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 295.0 aluminum and the bottom bar is 7003 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
70
Elongation at Break, % 2.0 to 7.2
11
Fatigue Strength, MPa 44 to 55
130 to 150
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 27
26
Shear Strength, MPa 180 to 230
210 to 230
Tensile Strength: Ultimate (UTS), MPa 230 to 280
350 to 390
Tensile Strength: Yield (Proof), MPa 100 to 220
300 to 310

Thermal Properties

Latent Heat of Fusion, J/g 400
380
Maximum Temperature: Mechanical, °C 170
200
Melting Completion (Liquidus), °C 640
630
Melting Onset (Solidus), °C 530
510
Specific Heat Capacity, J/kg-K 880
870
Thermal Conductivity, W/m-K 140
150
Thermal Expansion, µm/m-K 23
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
36
Electrical Conductivity: Equal Weight (Specific), % IACS 100
110

Otherwise Unclassified Properties

Base Metal Price, % relative 10
9.5
Density, g/cm3 3.0
2.9
Embodied Carbon, kg CO2/kg material 7.9
8.1
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1140
1140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.2 to 13
37 to 41
Resilience: Unit (Modulus of Resilience), kJ/m3 77 to 340
630 to 710
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 46
47
Strength to Weight: Axial, points 21 to 26
33 to 37
Strength to Weight: Bending, points 27 to 32
37 to 40
Thermal Diffusivity, mm2/s 54
59
Thermal Shock Resistance, points 9.8 to 12
15 to 17

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 91.4 to 95.3
90.6 to 94.5
Chromium (Cr), % 0
0 to 0.2
Copper (Cu), % 4.0 to 5.0
0 to 0.2
Iron (Fe), % 0 to 1.0
0 to 0.35
Magnesium (Mg), % 0 to 0.030
0.5 to 1.0
Manganese (Mn), % 0 to 0.35
0 to 0.3
Silicon (Si), % 0.7 to 1.5
0 to 0.3
Titanium (Ti), % 0 to 0.25
0 to 0.2
Zinc (Zn), % 0 to 0.35
5.0 to 6.5
Zirconium (Zr), % 0
0.050 to 0.25
Residuals, % 0 to 0.15
0 to 0.15

Comparable Variants