MakeItFrom.com
Menu (ESC)

295.0 Aluminum vs. ASTM B817 Type I

295.0 aluminum belongs to the aluminum alloys classification, while ASTM B817 type I belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is 295.0 aluminum and the bottom bar is ASTM B817 type I.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
100
Elongation at Break, % 2.0 to 7.2
4.0 to 13
Fatigue Strength, MPa 44 to 55
360 to 520
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 27
40
Tensile Strength: Ultimate (UTS), MPa 230 to 280
770 to 960
Tensile Strength: Yield (Proof), MPa 100 to 220
700 to 860

Thermal Properties

Latent Heat of Fusion, J/g 400
410
Maximum Temperature: Mechanical, °C 170
340
Melting Completion (Liquidus), °C 640
1600
Melting Onset (Solidus), °C 530
1550
Specific Heat Capacity, J/kg-K 880
560
Thermal Conductivity, W/m-K 140
7.1
Thermal Expansion, µm/m-K 23
9.6

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 100
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 10
36
Density, g/cm3 3.0
4.4
Embodied Carbon, kg CO2/kg material 7.9
38
Embodied Energy, MJ/kg 150
610
Embodied Water, L/kg 1140
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.2 to 13
30 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 77 to 340
2310 to 3540
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 46
35
Strength to Weight: Axial, points 21 to 26
48 to 60
Strength to Weight: Bending, points 27 to 32
42 to 49
Thermal Diffusivity, mm2/s 54
2.9
Thermal Shock Resistance, points 9.8 to 12
54 to 68

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 91.4 to 95.3
5.5 to 6.8
Carbon (C), % 0
0 to 0.1
Chlorine (Cl), % 0
0 to 0.2
Copper (Cu), % 4.0 to 5.0
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 1.0
0 to 0.4
Magnesium (Mg), % 0 to 0.030
0
Manganese (Mn), % 0 to 0.35
0
Nitrogen (N), % 0
0 to 0.040
Oxygen (O), % 0
0 to 0.3
Silicon (Si), % 0.7 to 1.5
0 to 0.1
Sodium (Na), % 0
0 to 0.2
Titanium (Ti), % 0 to 0.25
87 to 91
Vanadium (V), % 0
3.5 to 4.5
Zinc (Zn), % 0 to 0.35
0
Residuals, % 0 to 0.15
0 to 0.4