MakeItFrom.com
Menu (ESC)

295.0 Aluminum vs. C92600 Bronze

295.0 aluminum belongs to the aluminum alloys classification, while C92600 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 295.0 aluminum and the bottom bar is C92600 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 60 to 93
70
Elastic (Young's, Tensile) Modulus, GPa 71
110
Elongation at Break, % 2.0 to 7.2
30
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 27
40
Tensile Strength: Ultimate (UTS), MPa 230 to 280
300
Tensile Strength: Yield (Proof), MPa 100 to 220
140

Thermal Properties

Latent Heat of Fusion, J/g 400
190
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 640
980
Melting Onset (Solidus), °C 530
840
Specific Heat Capacity, J/kg-K 880
370
Thermal Conductivity, W/m-K 140
67
Thermal Expansion, µm/m-K 23
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
9.0
Electrical Conductivity: Equal Weight (Specific), % IACS 100
9.3

Otherwise Unclassified Properties

Base Metal Price, % relative 10
34
Density, g/cm3 3.0
8.7
Embodied Carbon, kg CO2/kg material 7.9
3.6
Embodied Energy, MJ/kg 150
58
Embodied Water, L/kg 1140
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.2 to 13
74
Resilience: Unit (Modulus of Resilience), kJ/m3 77 to 340
88
Stiffness to Weight: Axial, points 13
6.8
Stiffness to Weight: Bending, points 46
18
Strength to Weight: Axial, points 21 to 26
9.6
Strength to Weight: Bending, points 27 to 32
11
Thermal Diffusivity, mm2/s 54
21
Thermal Shock Resistance, points 9.8 to 12
11

Alloy Composition

Aluminum (Al), % 91.4 to 95.3
0 to 0.0050
Antimony (Sb), % 0
0 to 0.25
Copper (Cu), % 4.0 to 5.0
86 to 88.5
Iron (Fe), % 0 to 1.0
0 to 0.2
Lead (Pb), % 0
0.8 to 1.5
Magnesium (Mg), % 0 to 0.030
0
Manganese (Mn), % 0 to 0.35
0
Nickel (Ni), % 0
0 to 0.7
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0.7 to 1.5
0 to 0.0050
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0
9.3 to 10.5
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.35
1.3 to 2.5
Residuals, % 0
0 to 0.7