MakeItFrom.com
Menu (ESC)

295.0 Aluminum vs. N07752 Nickel

295.0 aluminum belongs to the aluminum alloys classification, while N07752 nickel belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 295.0 aluminum and the bottom bar is N07752 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
190
Elongation at Break, % 2.0 to 7.2
22
Fatigue Strength, MPa 44 to 55
450
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
73
Shear Strength, MPa 180 to 230
710
Tensile Strength: Ultimate (UTS), MPa 230 to 280
1120
Tensile Strength: Yield (Proof), MPa 100 to 220
740

Thermal Properties

Latent Heat of Fusion, J/g 400
310
Maximum Temperature: Mechanical, °C 170
960
Melting Completion (Liquidus), °C 640
1380
Melting Onset (Solidus), °C 530
1330
Specific Heat Capacity, J/kg-K 880
460
Thermal Conductivity, W/m-K 140
13
Thermal Expansion, µm/m-K 23
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 100
1.5

Otherwise Unclassified Properties

Base Metal Price, % relative 10
60
Density, g/cm3 3.0
8.4
Embodied Carbon, kg CO2/kg material 7.9
10
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1140
260

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.2 to 13
220
Resilience: Unit (Modulus of Resilience), kJ/m3 77 to 340
1450
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 46
23
Strength to Weight: Axial, points 21 to 26
37
Strength to Weight: Bending, points 27 to 32
29
Thermal Diffusivity, mm2/s 54
3.2
Thermal Shock Resistance, points 9.8 to 12
34

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 91.4 to 95.3
0.4 to 1.0
Boron (B), % 0
0 to 0.0070
Carbon (C), % 0
0.020 to 0.060
Chromium (Cr), % 0
14.5 to 17
Cobalt (Co), % 0
0 to 0.050
Copper (Cu), % 4.0 to 5.0
0 to 0.5
Iron (Fe), % 0 to 1.0
5.0 to 9.0
Magnesium (Mg), % 0 to 0.030
0
Manganese (Mn), % 0 to 0.35
0 to 1.0
Nickel (Ni), % 0
70 to 77.1
Niobium (Nb), % 0
0.7 to 1.2
Phosphorus (P), % 0
0 to 0.0080
Silicon (Si), % 0.7 to 1.5
0 to 0.5
Sulfur (S), % 0
0 to 0.0030
Titanium (Ti), % 0 to 0.25
2.3 to 2.8
Vanadium (V), % 0
0 to 0.1
Zinc (Zn), % 0 to 0.35
0 to 0.050
Residuals, % 0 to 0.15
0