MakeItFrom.com
Menu (ESC)

296.0 Aluminum vs. AISI 301LN Stainless Steel

296.0 aluminum belongs to the aluminum alloys classification, while AISI 301LN stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 296.0 aluminum and the bottom bar is AISI 301LN stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 75 to 90
210 to 320
Elastic (Young's, Tensile) Modulus, GPa 72
200
Elongation at Break, % 3.2 to 7.1
23 to 51
Fatigue Strength, MPa 47 to 70
270 to 520
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
77
Tensile Strength: Ultimate (UTS), MPa 260 to 270
630 to 1060
Tensile Strength: Yield (Proof), MPa 120 to 180
270 to 770

Thermal Properties

Latent Heat of Fusion, J/g 420
280
Maximum Temperature: Mechanical, °C 170
890
Melting Completion (Liquidus), °C 630
1430
Melting Onset (Solidus), °C 540
1380
Specific Heat Capacity, J/kg-K 870
480
Thermal Conductivity, W/m-K 130 to 150
15
Thermal Expansion, µm/m-K 22
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33 to 37
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 99 to 110
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 11
13
Density, g/cm3 3.0
7.8
Embodied Carbon, kg CO2/kg material 7.8
2.7
Embodied Energy, MJ/kg 150
39
Embodied Water, L/kg 1110
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.6 to 15
220 to 290
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 220
180 to 1520
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
25
Strength to Weight: Axial, points 24 to 25
22 to 38
Strength to Weight: Bending, points 30 to 31
21 to 30
Thermal Diffusivity, mm2/s 51 to 56
4.0
Thermal Shock Resistance, points 12
14 to 24

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 89 to 94
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
16 to 18
Copper (Cu), % 4.0 to 5.0
0
Iron (Fe), % 0 to 1.2
70.7 to 77.9
Magnesium (Mg), % 0 to 0.050
0
Manganese (Mn), % 0 to 0.35
0 to 2.0
Nickel (Ni), % 0 to 0.35
6.0 to 8.0
Nitrogen (N), % 0
0.070 to 0.2
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 2.0 to 3.0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.35
0