MakeItFrom.com
Menu (ESC)

296.0 Aluminum vs. EN 1.7725 Steel

296.0 aluminum belongs to the aluminum alloys classification, while EN 1.7725 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 296.0 aluminum and the bottom bar is EN 1.7725 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 75 to 90
250 to 300
Elastic (Young's, Tensile) Modulus, GPa 72
190
Elongation at Break, % 3.2 to 7.1
14
Fatigue Strength, MPa 47 to 70
390 to 550
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
73
Tensile Strength: Ultimate (UTS), MPa 260 to 270
830 to 1000
Tensile Strength: Yield (Proof), MPa 120 to 180
610 to 860

Thermal Properties

Latent Heat of Fusion, J/g 420
250
Maximum Temperature: Mechanical, °C 170
440
Melting Completion (Liquidus), °C 630
1460
Melting Onset (Solidus), °C 540
1420
Specific Heat Capacity, J/kg-K 870
470
Thermal Conductivity, W/m-K 130 to 150
39
Thermal Expansion, µm/m-K 22
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33 to 37
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 99 to 110
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 11
2.9
Density, g/cm3 3.0
7.8
Embodied Carbon, kg CO2/kg material 7.8
1.8
Embodied Energy, MJ/kg 150
24
Embodied Water, L/kg 1110
54

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.6 to 15
110 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 220
980 to 1940
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 46
24
Strength to Weight: Axial, points 24 to 25
29 to 35
Strength to Weight: Bending, points 30 to 31
25 to 28
Thermal Diffusivity, mm2/s 51 to 56
11
Thermal Shock Resistance, points 12
24 to 29

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 89 to 94
0
Carbon (C), % 0
0.27 to 0.34
Chromium (Cr), % 0
1.3 to 1.7
Copper (Cu), % 4.0 to 5.0
0
Iron (Fe), % 0 to 1.2
95.7 to 97.5
Magnesium (Mg), % 0 to 0.050
0
Manganese (Mn), % 0 to 0.35
0.6 to 1.0
Molybdenum (Mo), % 0
0.3 to 0.5
Nickel (Ni), % 0 to 0.35
0
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 2.0 to 3.0
0 to 0.6
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.25
0
Vanadium (V), % 0
0.050 to 0.15
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.35
0

Comparable Variants