MakeItFrom.com
Menu (ESC)

296.0 Aluminum vs. CC140C Copper

296.0 aluminum belongs to the aluminum alloys classification, while CC140C copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 296.0 aluminum and the bottom bar is CC140C copper.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 75 to 90
110
Elastic (Young's, Tensile) Modulus, GPa 72
120
Elongation at Break, % 3.2 to 7.1
11
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 27
44
Tensile Strength: Ultimate (UTS), MPa 260 to 270
340
Tensile Strength: Yield (Proof), MPa 120 to 180
230

Thermal Properties

Latent Heat of Fusion, J/g 420
210
Maximum Temperature: Mechanical, °C 170
200
Melting Completion (Liquidus), °C 630
1100
Melting Onset (Solidus), °C 540
1040
Specific Heat Capacity, J/kg-K 870
390
Thermal Conductivity, W/m-K 130 to 150
310
Thermal Expansion, µm/m-K 22
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33 to 37
77
Electrical Conductivity: Equal Weight (Specific), % IACS 99 to 110
78

Otherwise Unclassified Properties

Base Metal Price, % relative 11
31
Density, g/cm3 3.0
8.9
Embodied Carbon, kg CO2/kg material 7.8
2.6
Embodied Energy, MJ/kg 150
41
Embodied Water, L/kg 1110
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.6 to 15
34
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 220
220
Stiffness to Weight: Axial, points 13
7.3
Stiffness to Weight: Bending, points 46
18
Strength to Weight: Axial, points 24 to 25
10
Strength to Weight: Bending, points 30 to 31
12
Thermal Diffusivity, mm2/s 51 to 56
89
Thermal Shock Resistance, points 12
12

Alloy Composition

Aluminum (Al), % 89 to 94
0
Chromium (Cr), % 0
0.4 to 1.2
Copper (Cu), % 4.0 to 5.0
98.8 to 99.6
Iron (Fe), % 0 to 1.2
0
Magnesium (Mg), % 0 to 0.050
0
Manganese (Mn), % 0 to 0.35
0
Nickel (Ni), % 0 to 0.35
0
Silicon (Si), % 2.0 to 3.0
0
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.35
0