MakeItFrom.com
Menu (ESC)

296.0 Aluminum vs. Nickel 693

296.0 aluminum belongs to the aluminum alloys classification, while nickel 693 belongs to the nickel alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 296.0 aluminum and the bottom bar is nickel 693.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
200
Elongation at Break, % 3.2 to 7.1
34
Fatigue Strength, MPa 47 to 70
230
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
76
Tensile Strength: Ultimate (UTS), MPa 260 to 270
660
Tensile Strength: Yield (Proof), MPa 120 to 180
310

Thermal Properties

Latent Heat of Fusion, J/g 420
330
Maximum Temperature: Mechanical, °C 170
1010
Melting Completion (Liquidus), °C 630
1350
Melting Onset (Solidus), °C 540
1310
Specific Heat Capacity, J/kg-K 870
480
Thermal Conductivity, W/m-K 130 to 150
9.1
Thermal Expansion, µm/m-K 22
13

Otherwise Unclassified Properties

Base Metal Price, % relative 11
60
Density, g/cm3 3.0
8.1
Embodied Carbon, kg CO2/kg material 7.8
9.9
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1110
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.6 to 15
190
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 220
250
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 46
24
Strength to Weight: Axial, points 24 to 25
23
Strength to Weight: Bending, points 30 to 31
21
Thermal Diffusivity, mm2/s 51 to 56
2.3
Thermal Shock Resistance, points 12
19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 89 to 94
2.5 to 4.0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
27 to 31
Copper (Cu), % 4.0 to 5.0
0 to 0.5
Iron (Fe), % 0 to 1.2
2.5 to 6.0
Magnesium (Mg), % 0 to 0.050
0
Manganese (Mn), % 0 to 0.35
0 to 1.0
Nickel (Ni), % 0 to 0.35
53.3 to 67.5
Niobium (Nb), % 0
0.5 to 2.5
Silicon (Si), % 2.0 to 3.0
0 to 0.5
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.25
0 to 1.0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.35
0