MakeItFrom.com
Menu (ESC)

296.0 Aluminum vs. C44400 Brass

296.0 aluminum belongs to the aluminum alloys classification, while C44400 brass belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 296.0 aluminum and the bottom bar is C44400 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
110
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 27
41
Tensile Strength: Ultimate (UTS), MPa 260 to 270
350
Tensile Strength: Yield (Proof), MPa 120 to 180
120

Thermal Properties

Latent Heat of Fusion, J/g 420
180
Maximum Temperature: Mechanical, °C 170
140
Melting Completion (Liquidus), °C 630
940
Melting Onset (Solidus), °C 540
900
Specific Heat Capacity, J/kg-K 870
380
Thermal Conductivity, W/m-K 130 to 150
110
Thermal Expansion, µm/m-K 22
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33 to 37
25
Electrical Conductivity: Equal Weight (Specific), % IACS 99 to 110
27

Otherwise Unclassified Properties

Base Metal Price, % relative 11
26
Density, g/cm3 3.0
8.3
Embodied Carbon, kg CO2/kg material 7.8
2.8
Embodied Energy, MJ/kg 150
46
Embodied Water, L/kg 1110
330

Common Calculations

Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 220
65
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 46
19
Strength to Weight: Axial, points 24 to 25
12
Strength to Weight: Bending, points 30 to 31
13
Thermal Diffusivity, mm2/s 51 to 56
35
Thermal Shock Resistance, points 12
12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 89 to 94
0
Antimony (Sb), % 0
0.020 to 0.1
Copper (Cu), % 4.0 to 5.0
70 to 73
Iron (Fe), % 0 to 1.2
0 to 0.060
Lead (Pb), % 0
0 to 0.070
Magnesium (Mg), % 0 to 0.050
0
Manganese (Mn), % 0 to 0.35
0
Nickel (Ni), % 0 to 0.35
0
Silicon (Si), % 2.0 to 3.0
0
Tin (Sn), % 0
0.9 to 1.2
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.5
25.2 to 29.1
Residuals, % 0 to 0.35
0 to 0.4