MakeItFrom.com
Menu (ESC)

296.0 Aluminum vs. C95410 Bronze

296.0 aluminum belongs to the aluminum alloys classification, while C95410 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 296.0 aluminum and the bottom bar is C95410 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 75 to 90
160 to 200
Elastic (Young's, Tensile) Modulus, GPa 72
120
Elongation at Break, % 3.2 to 7.1
9.1 to 13
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 27
43
Tensile Strength: Ultimate (UTS), MPa 260 to 270
620 to 740
Tensile Strength: Yield (Proof), MPa 120 to 180
260 to 380

Thermal Properties

Latent Heat of Fusion, J/g 420
230
Maximum Temperature: Mechanical, °C 170
230
Melting Completion (Liquidus), °C 630
1040
Melting Onset (Solidus), °C 540
1030
Specific Heat Capacity, J/kg-K 870
440
Thermal Conductivity, W/m-K 130 to 150
59
Thermal Expansion, µm/m-K 22
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33 to 37
13
Electrical Conductivity: Equal Weight (Specific), % IACS 99 to 110
14

Otherwise Unclassified Properties

Base Metal Price, % relative 11
28
Density, g/cm3 3.0
8.2
Embodied Carbon, kg CO2/kg material 7.8
3.3
Embodied Energy, MJ/kg 150
54
Embodied Water, L/kg 1110
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.6 to 15
57 to 64
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 220
280 to 630
Stiffness to Weight: Axial, points 13
7.8
Stiffness to Weight: Bending, points 46
20
Strength to Weight: Axial, points 24 to 25
21 to 25
Strength to Weight: Bending, points 30 to 31
20 to 22
Thermal Diffusivity, mm2/s 51 to 56
16
Thermal Shock Resistance, points 12
22 to 26

Alloy Composition

Aluminum (Al), % 89 to 94
10 to 11.5
Copper (Cu), % 4.0 to 5.0
83 to 85.5
Iron (Fe), % 0 to 1.2
3.0 to 5.0
Magnesium (Mg), % 0 to 0.050
0
Manganese (Mn), % 0 to 0.35
0 to 0.5
Nickel (Ni), % 0 to 0.35
1.5 to 2.5
Silicon (Si), % 2.0 to 3.0
0
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0
0 to 0.5