MakeItFrom.com
Menu (ESC)

296.0 Aluminum vs. S30600 Stainless Steel

296.0 aluminum belongs to the aluminum alloys classification, while S30600 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 296.0 aluminum and the bottom bar is S30600 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 75 to 90
180
Elastic (Young's, Tensile) Modulus, GPa 72
190
Elongation at Break, % 3.2 to 7.1
45
Fatigue Strength, MPa 47 to 70
250
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
76
Tensile Strength: Ultimate (UTS), MPa 260 to 270
610
Tensile Strength: Yield (Proof), MPa 120 to 180
270

Thermal Properties

Latent Heat of Fusion, J/g 420
350
Maximum Temperature: Mechanical, °C 170
950
Melting Completion (Liquidus), °C 630
1380
Melting Onset (Solidus), °C 540
1330
Specific Heat Capacity, J/kg-K 870
490
Thermal Conductivity, W/m-K 130 to 150
14
Thermal Expansion, µm/m-K 22
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33 to 37
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 99 to 110
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 11
19
Density, g/cm3 3.0
7.6
Embodied Carbon, kg CO2/kg material 7.8
3.6
Embodied Energy, MJ/kg 150
51
Embodied Water, L/kg 1110
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.6 to 15
220
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 220
190
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
25
Strength to Weight: Axial, points 24 to 25
22
Strength to Weight: Bending, points 30 to 31
21
Thermal Diffusivity, mm2/s 51 to 56
3.7
Thermal Shock Resistance, points 12
14

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 89 to 94
0
Carbon (C), % 0
0 to 0.018
Chromium (Cr), % 0
17 to 18.5
Copper (Cu), % 4.0 to 5.0
0 to 0.5
Iron (Fe), % 0 to 1.2
58.9 to 65.3
Magnesium (Mg), % 0 to 0.050
0
Manganese (Mn), % 0 to 0.35
0 to 2.0
Molybdenum (Mo), % 0
0 to 0.2
Nickel (Ni), % 0 to 0.35
14 to 15.5
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 2.0 to 3.0
3.7 to 4.3
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.35
0