MakeItFrom.com
Menu (ESC)

296.0 Aluminum vs. S44735 Stainless Steel

296.0 aluminum belongs to the aluminum alloys classification, while S44735 stainless steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 296.0 aluminum and the bottom bar is S44735 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 75 to 90
220
Elastic (Young's, Tensile) Modulus, GPa 72
210
Elongation at Break, % 3.2 to 7.1
21
Fatigue Strength, MPa 47 to 70
300
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 27
82
Tensile Strength: Ultimate (UTS), MPa 260 to 270
630
Tensile Strength: Yield (Proof), MPa 120 to 180
460

Thermal Properties

Latent Heat of Fusion, J/g 420
310
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 630
1460
Melting Onset (Solidus), °C 540
1420
Specific Heat Capacity, J/kg-K 870
480
Thermal Expansion, µm/m-K 22
11

Otherwise Unclassified Properties

Base Metal Price, % relative 11
21
Density, g/cm3 3.0
7.7
Embodied Carbon, kg CO2/kg material 7.8
4.4
Embodied Energy, MJ/kg 150
61
Embodied Water, L/kg 1110
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.6 to 15
120
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 220
520
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 46
26
Strength to Weight: Axial, points 24 to 25
23
Strength to Weight: Bending, points 30 to 31
21
Thermal Shock Resistance, points 12
20

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 89 to 94
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
28 to 30
Copper (Cu), % 4.0 to 5.0
0
Iron (Fe), % 0 to 1.2
60.7 to 68.4
Magnesium (Mg), % 0 to 0.050
0
Manganese (Mn), % 0 to 0.35
0 to 1.0
Molybdenum (Mo), % 0
3.6 to 4.2
Nickel (Ni), % 0 to 0.35
0 to 1.0
Niobium (Nb), % 0
0.2 to 1.0
Nitrogen (N), % 0
0 to 0.045
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 2.0 to 3.0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.25
0.2 to 1.0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.35
0