MakeItFrom.com
Menu (ESC)

296.0-T6 Aluminum vs. 6110A-T6 Aluminum

Both 296.0-T6 aluminum and 6110A-T6 aluminum are aluminum alloys. Both are furnished in the T6 temper. They have a moderately high 94% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 296.0-T6 aluminum and the bottom bar is 6110A-T6 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
70
Elongation at Break, % 3.2
11
Fatigue Strength, MPa 70
180
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
26
Shear Strength, MPa 220
280
Tensile Strength: Ultimate (UTS), MPa 270
470
Tensile Strength: Yield (Proof), MPa 180
430

Thermal Properties

Latent Heat of Fusion, J/g 420
410
Maximum Temperature: Mechanical, °C 170
190
Melting Completion (Liquidus), °C 630
650
Melting Onset (Solidus), °C 540
600
Specific Heat Capacity, J/kg-K 870
900
Thermal Conductivity, W/m-K 130
160
Thermal Expansion, µm/m-K 22
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
42
Electrical Conductivity: Equal Weight (Specific), % IACS 99
140

Otherwise Unclassified Properties

Base Metal Price, % relative 11
9.5
Density, g/cm3 3.0
2.8
Embodied Carbon, kg CO2/kg material 7.8
8.4
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1110
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.6
52
Resilience: Unit (Modulus of Resilience), kJ/m3 220
1300
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
50
Strength to Weight: Axial, points 25
47
Strength to Weight: Bending, points 31
48
Thermal Diffusivity, mm2/s 51
65
Thermal Shock Resistance, points 12
21

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 89 to 94
94.8 to 98
Chromium (Cr), % 0
0.050 to 0.25
Copper (Cu), % 4.0 to 5.0
0.3 to 0.8
Iron (Fe), % 0 to 1.2
0 to 0.5
Magnesium (Mg), % 0 to 0.050
0.7 to 1.1
Manganese (Mn), % 0 to 0.35
0.3 to 0.9
Nickel (Ni), % 0 to 0.35
0
Silicon (Si), % 2.0 to 3.0
0.7 to 1.1
Titanium (Ti), % 0 to 0.25
0 to 0.2
Zinc (Zn), % 0 to 0.5
0 to 0.2
Zirconium (Zr), % 0
0 to 0.2
Residuals, % 0 to 0.35
0 to 0.15