MakeItFrom.com
Menu (ESC)

3004 Aluminum vs. 6070 Aluminum

Both 3004 aluminum and 6070 aluminum are aluminum alloys. They have a very high 99% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 3004 aluminum and the bottom bar is 6070 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
70
Elongation at Break, % 1.1 to 19
5.6 to 8.6
Fatigue Strength, MPa 55 to 120
95 to 130
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
26
Shear Strength, MPa 100 to 180
220 to 240
Tensile Strength: Ultimate (UTS), MPa 170 to 310
370 to 380
Tensile Strength: Yield (Proof), MPa 68 to 270
350

Thermal Properties

Latent Heat of Fusion, J/g 400
410
Maximum Temperature: Mechanical, °C 180
160
Melting Completion (Liquidus), °C 650
650
Melting Onset (Solidus), °C 630
570
Specific Heat Capacity, J/kg-K 900
900
Thermal Conductivity, W/m-K 160
160
Thermal Expansion, µm/m-K 24
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 42
41
Electrical Conductivity: Equal Weight (Specific), % IACS 140
140

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.8
2.7
Embodied Carbon, kg CO2/kg material 8.3
8.3
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1180
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.2 to 27
20 to 32
Resilience: Unit (Modulus of Resilience), kJ/m3 33 to 540
880 to 900
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
50
Strength to Weight: Axial, points 18 to 31
38
Strength to Weight: Bending, points 25 to 37
42 to 43
Thermal Diffusivity, mm2/s 65
65
Thermal Shock Resistance, points 7.6 to 13
16 to 17

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 95.6 to 98.2
94.6 to 98
Chromium (Cr), % 0
0 to 0.1
Copper (Cu), % 0 to 0.25
0.15 to 0.4
Iron (Fe), % 0 to 0.7
0 to 0.5
Magnesium (Mg), % 0.8 to 1.3
0.5 to 1.2
Manganese (Mn), % 1.0 to 1.5
0.4 to 1.0
Silicon (Si), % 0 to 0.3
1.0 to 1.7
Titanium (Ti), % 0
0 to 0.15
Zinc (Zn), % 0 to 0.25
0 to 0.25
Residuals, % 0 to 0.15
0 to 0.15