MakeItFrom.com
Menu (ESC)

3004 Aluminum vs. Grade CW2M Nickel

3004 aluminum belongs to the aluminum alloys classification, while grade CW2M nickel belongs to the nickel alloys. There are 25 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 3004 aluminum and the bottom bar is grade CW2M nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
210
Elongation at Break, % 1.1 to 19
23
Fatigue Strength, MPa 55 to 120
190
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
83
Tensile Strength: Ultimate (UTS), MPa 170 to 310
560
Tensile Strength: Yield (Proof), MPa 68 to 270
310

Thermal Properties

Latent Heat of Fusion, J/g 400
330
Maximum Temperature: Mechanical, °C 180
960
Melting Completion (Liquidus), °C 650
1520
Melting Onset (Solidus), °C 630
1460
Specific Heat Capacity, J/kg-K 900
430
Thermal Expansion, µm/m-K 24
12

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
70
Density, g/cm3 2.8
8.8
Embodied Carbon, kg CO2/kg material 8.3
12
Embodied Energy, MJ/kg 150
170
Embodied Water, L/kg 1180
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.2 to 27
110
Resilience: Unit (Modulus of Resilience), kJ/m3 33 to 540
220
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
23
Strength to Weight: Axial, points 18 to 31
18
Strength to Weight: Bending, points 25 to 37
17
Thermal Shock Resistance, points 7.6 to 13
16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 95.6 to 98.2
0
Carbon (C), % 0
0 to 0.020
Chromium (Cr), % 0
15 to 17.5
Copper (Cu), % 0 to 0.25
0
Iron (Fe), % 0 to 0.7
0 to 2.0
Magnesium (Mg), % 0.8 to 1.3
0
Manganese (Mn), % 1.0 to 1.5
0 to 1.0
Molybdenum (Mo), % 0
15 to 17.5
Nickel (Ni), % 0
60.1 to 70
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.3
0 to 0.8
Sulfur (S), % 0
0 to 0.030
Tungsten (W), % 0
0 to 1.0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0