MakeItFrom.com
Menu (ESC)

3004-H24 Aluminum vs. 5040-H24 Aluminum

Both 3004-H24 aluminum and 5040-H24 aluminum are aluminum alloys. Both are furnished in the H24 temper. Their average alloy composition is basically identical. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 3004-H24 aluminum and the bottom bar is 5040-H24 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 66
66
Elastic (Young's, Tensile) Modulus, GPa 70
70
Elongation at Break, % 3.4
6.8
Fatigue Strength, MPa 97
100
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
26
Shear Strength, MPa 140
140
Tensile Strength: Ultimate (UTS), MPa 240
240
Tensile Strength: Yield (Proof), MPa 190
190

Thermal Properties

Latent Heat of Fusion, J/g 400
400
Maximum Temperature: Mechanical, °C 180
190
Melting Completion (Liquidus), °C 650
650
Melting Onset (Solidus), °C 630
600
Specific Heat Capacity, J/kg-K 900
900
Thermal Conductivity, W/m-K 160
160
Thermal Expansion, µm/m-K 24
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 42
41
Electrical Conductivity: Equal Weight (Specific), % IACS 140
130

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.8
2.8
Embodied Carbon, kg CO2/kg material 8.3
8.3
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1180
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.6
15
Resilience: Unit (Modulus of Resilience), kJ/m3 270
260
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
50
Strength to Weight: Axial, points 24
24
Strength to Weight: Bending, points 31
31
Thermal Diffusivity, mm2/s 65
64
Thermal Shock Resistance, points 10
10

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 95.6 to 98.2
95.2 to 98
Chromium (Cr), % 0
0.1 to 0.3
Copper (Cu), % 0 to 0.25
0 to 0.25
Iron (Fe), % 0 to 0.7
0 to 0.7
Magnesium (Mg), % 0.8 to 1.3
1.0 to 1.5
Manganese (Mn), % 1.0 to 1.5
0.9 to 1.4
Silicon (Si), % 0 to 0.3
0 to 0.3
Zinc (Zn), % 0 to 0.25
0 to 0.25
Residuals, % 0 to 0.15
0 to 0.15