MakeItFrom.com
Menu (ESC)

3004-H24 Aluminum vs. 5252-H24 Aluminum

Both 3004-H24 aluminum and 5252-H24 aluminum are aluminum alloys. Both are furnished in the H24 temper. They have a very high 98% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 3004-H24 aluminum and the bottom bar is 5252-H24 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
68
Elongation at Break, % 3.4
11
Fatigue Strength, MPa 97
100
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
25
Shear Strength, MPa 140
140
Tensile Strength: Ultimate (UTS), MPa 240
230
Tensile Strength: Yield (Proof), MPa 190
170

Thermal Properties

Latent Heat of Fusion, J/g 400
400
Maximum Temperature: Mechanical, °C 180
180
Melting Completion (Liquidus), °C 650
650
Melting Onset (Solidus), °C 630
610
Specific Heat Capacity, J/kg-K 900
910
Thermal Conductivity, W/m-K 160
140
Thermal Expansion, µm/m-K 24
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 42
34
Electrical Conductivity: Equal Weight (Specific), % IACS 140
120

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.8
2.7
Embodied Carbon, kg CO2/kg material 8.3
8.7
Embodied Energy, MJ/kg 150
160
Embodied Water, L/kg 1180
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.6
23
Resilience: Unit (Modulus of Resilience), kJ/m3 270
220
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
51
Strength to Weight: Axial, points 24
23
Strength to Weight: Bending, points 31
31
Thermal Diffusivity, mm2/s 65
57
Thermal Shock Resistance, points 10
10

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 95.6 to 98.2
96.6 to 97.8
Copper (Cu), % 0 to 0.25
0 to 0.1
Iron (Fe), % 0 to 0.7
0 to 0.1
Magnesium (Mg), % 0.8 to 1.3
2.2 to 2.8
Manganese (Mn), % 1.0 to 1.5
0 to 0.1
Silicon (Si), % 0 to 0.3
0 to 0.080
Vanadium (V), % 0
0 to 0.050
Zinc (Zn), % 0 to 0.25
0 to 0.050
Residuals, % 0 to 0.15
0 to 0.1