MakeItFrom.com
Menu (ESC)

3005-H16 Aluminum vs. 5050-H16 Aluminum

Both 3005-H16 aluminum and 5050-H16 aluminum are aluminum alloys. Both are furnished in the H16 temper. They have a very high 99% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 3005-H16 aluminum and the bottom bar is 5050-H16 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 61
61
Elastic (Young's, Tensile) Modulus, GPa 70
68
Elongation at Break, % 1.7
2.2
Fatigue Strength, MPa 78
80
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
26
Shear Strength, MPa 120
120
Tensile Strength: Ultimate (UTS), MPa 210
210
Tensile Strength: Yield (Proof), MPa 190
190

Thermal Properties

Latent Heat of Fusion, J/g 400
400
Maximum Temperature: Mechanical, °C 180
180
Melting Completion (Liquidus), °C 660
650
Melting Onset (Solidus), °C 640
630
Specific Heat Capacity, J/kg-K 900
900
Thermal Conductivity, W/m-K 160
190
Thermal Expansion, µm/m-K 23
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 42
50
Electrical Conductivity: Equal Weight (Specific), % IACS 140
170

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.8
2.7
Embodied Carbon, kg CO2/kg material 8.2
8.4
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1180
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.5
4.7
Resilience: Unit (Modulus of Resilience), kJ/m3 260
280
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 49
50
Strength to Weight: Axial, points 21
22
Strength to Weight: Bending, points 29
29
Thermal Diffusivity, mm2/s 64
79
Thermal Shock Resistance, points 9.4
9.4

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 95.7 to 98.8
96.3 to 98.9
Chromium (Cr), % 0 to 0.1
0 to 0.1
Copper (Cu), % 0 to 0.3
0 to 0.2
Iron (Fe), % 0 to 0.7
0 to 0.7
Magnesium (Mg), % 0.2 to 0.6
1.1 to 1.8
Manganese (Mn), % 1.0 to 1.5
0 to 0.1
Silicon (Si), % 0 to 0.6
0 to 0.4
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.25
0 to 0.25
Residuals, % 0 to 0.15
0 to 0.15