MakeItFrom.com
Menu (ESC)

308.0 Aluminum vs. 364.0 Aluminum

Both 308.0 aluminum and 364.0 aluminum are aluminum alloys. Both are furnished in the as-fabricated (no temper or treatment) condition. They have a moderately high 95% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 308.0 aluminum and the bottom bar is 364.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 73
72
Elongation at Break, % 2.0
7.5
Fatigue Strength, MPa 89
120
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
27
Shear Strength, MPa 150
200
Tensile Strength: Ultimate (UTS), MPa 190
300
Tensile Strength: Yield (Proof), MPa 110
160

Thermal Properties

Latent Heat of Fusion, J/g 470
520
Maximum Temperature: Mechanical, °C 170
190
Melting Completion (Liquidus), °C 620
600
Melting Onset (Solidus), °C 540
560
Specific Heat Capacity, J/kg-K 870
900
Thermal Conductivity, W/m-K 140
120
Thermal Expansion, µm/m-K 20
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 37
30
Electrical Conductivity: Equal Weight (Specific), % IACS 110
100

Otherwise Unclassified Properties

Base Metal Price, % relative 10
11
Density, g/cm3 2.9
2.6
Embodied Carbon, kg CO2/kg material 7.7
8.0
Embodied Energy, MJ/kg 140
150
Embodied Water, L/kg 1080
1080

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.3
19
Resilience: Unit (Modulus of Resilience), kJ/m3 83
180
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 47
53
Strength to Weight: Axial, points 18
31
Strength to Weight: Bending, points 25
38
Thermal Diffusivity, mm2/s 55
51
Thermal Shock Resistance, points 9.2
14

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 85.7 to 91
87.2 to 92
Beryllium (Be), % 0
0.020 to 0.040
Chromium (Cr), % 0
0.25 to 0.5
Copper (Cu), % 4.0 to 5.0
0 to 0.2
Iron (Fe), % 0 to 1.0
0 to 1.5
Magnesium (Mg), % 0 to 0.1
0.2 to 0.4
Manganese (Mn), % 0 to 0.5
0 to 0.1
Nickel (Ni), % 0
0 to 0.15
Silicon (Si), % 5.0 to 6.0
7.5 to 9.5
Tin (Sn), % 0
0 to 0.15
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 1.0
0 to 0.15
Residuals, % 0 to 0.5
0 to 0.15