MakeItFrom.com
Menu (ESC)

308.0 Aluminum vs. EN AC-46300 Aluminum

Both 308.0 aluminum and EN AC-46300 aluminum are aluminum alloys. Both are furnished in the as-fabricated (no temper or treatment) condition. They have a very high 97% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 308.0 aluminum and the bottom bar is EN AC-46300 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 70
91
Elastic (Young's, Tensile) Modulus, GPa 73
73
Elongation at Break, % 2.0
1.1
Fatigue Strength, MPa 89
79
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
27
Tensile Strength: Ultimate (UTS), MPa 190
200
Tensile Strength: Yield (Proof), MPa 110
110

Thermal Properties

Latent Heat of Fusion, J/g 470
490
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 620
630
Melting Onset (Solidus), °C 540
530
Specific Heat Capacity, J/kg-K 870
880
Thermal Conductivity, W/m-K 140
120
Thermal Expansion, µm/m-K 20
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 37
27
Electrical Conductivity: Equal Weight (Specific), % IACS 110
84

Otherwise Unclassified Properties

Base Metal Price, % relative 10
10
Density, g/cm3 2.9
2.9
Embodied Carbon, kg CO2/kg material 7.7
7.7
Embodied Energy, MJ/kg 140
140
Embodied Water, L/kg 1080
1060

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.3
1.9
Resilience: Unit (Modulus of Resilience), kJ/m3 83
89
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 47
49
Strength to Weight: Axial, points 18
20
Strength to Weight: Bending, points 25
27
Thermal Diffusivity, mm2/s 55
47
Thermal Shock Resistance, points 9.2
9.1

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 85.7 to 91
84 to 90
Copper (Cu), % 4.0 to 5.0
3.0 to 4.0
Iron (Fe), % 0 to 1.0
0 to 0.8
Lead (Pb), % 0
0 to 0.15
Magnesium (Mg), % 0 to 0.1
0.3 to 0.6
Manganese (Mn), % 0 to 0.5
0.2 to 0.65
Nickel (Ni), % 0
0 to 0.3
Silicon (Si), % 5.0 to 6.0
6.5 to 8.0
Tin (Sn), % 0
0 to 0.1
Titanium (Ti), % 0 to 0.25
0 to 0.25
Zinc (Zn), % 0 to 1.0
0 to 0.65
Residuals, % 0 to 0.5
0 to 0.55