MakeItFrom.com
Menu (ESC)

308.0 Aluminum vs. C27400 Brass

308.0 aluminum belongs to the aluminum alloys classification, while C27400 brass belongs to the copper alloys. There are 24 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 308.0 aluminum and the bottom bar is C27400 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 73
110
Poisson's Ratio 0.33
0.31
Shear Modulus, GPa 27
40
Tensile Strength: Ultimate (UTS), MPa 190
370 to 650

Thermal Properties

Latent Heat of Fusion, J/g 470
170
Maximum Temperature: Mechanical, °C 170
120
Melting Completion (Liquidus), °C 620
920
Melting Onset (Solidus), °C 540
870
Specific Heat Capacity, J/kg-K 870
390
Thermal Conductivity, W/m-K 140
120
Thermal Expansion, µm/m-K 20
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 37
28
Electrical Conductivity: Equal Weight (Specific), % IACS 110
31

Otherwise Unclassified Properties

Base Metal Price, % relative 10
23
Density, g/cm3 2.9
8.0
Embodied Carbon, kg CO2/kg material 7.7
2.7
Embodied Energy, MJ/kg 140
45
Embodied Water, L/kg 1080
320

Common Calculations

Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 47
20
Strength to Weight: Axial, points 18
13 to 23
Strength to Weight: Bending, points 25
14 to 21
Thermal Diffusivity, mm2/s 55
37
Thermal Shock Resistance, points 9.2
12 to 22

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 85.7 to 91
0
Copper (Cu), % 4.0 to 5.0
61 to 64
Iron (Fe), % 0 to 1.0
0 to 0.1
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.5
0
Silicon (Si), % 5.0 to 6.0
0
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 1.0
35.6 to 39
Residuals, % 0 to 0.5
0 to 0.3