MakeItFrom.com
Menu (ESC)

308.0 Aluminum vs. S31727 Stainless Steel

308.0 aluminum belongs to the aluminum alloys classification, while S31727 stainless steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 308.0 aluminum and the bottom bar is S31727 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 70
190
Elastic (Young's, Tensile) Modulus, GPa 73
200
Elongation at Break, % 2.0
40
Fatigue Strength, MPa 89
240
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
78
Shear Strength, MPa 150
430
Tensile Strength: Ultimate (UTS), MPa 190
630
Tensile Strength: Yield (Proof), MPa 110
270

Thermal Properties

Latent Heat of Fusion, J/g 470
290
Maximum Temperature: Mechanical, °C 170
1010
Melting Completion (Liquidus), °C 620
1440
Melting Onset (Solidus), °C 540
1390
Specific Heat Capacity, J/kg-K 870
470
Thermal Expansion, µm/m-K 20
16

Otherwise Unclassified Properties

Base Metal Price, % relative 10
24
Density, g/cm3 2.9
8.0
Embodied Carbon, kg CO2/kg material 7.7
4.7
Embodied Energy, MJ/kg 140
64
Embodied Water, L/kg 1080
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.3
200
Resilience: Unit (Modulus of Resilience), kJ/m3 83
190
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 47
24
Strength to Weight: Axial, points 18
22
Strength to Weight: Bending, points 25
20
Thermal Shock Resistance, points 9.2
14

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 85.7 to 91
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
17.5 to 19
Copper (Cu), % 4.0 to 5.0
2.8 to 4.0
Iron (Fe), % 0 to 1.0
53.7 to 61.3
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.5
0 to 1.0
Molybdenum (Mo), % 0
3.8 to 4.5
Nickel (Ni), % 0
14.5 to 16.5
Nitrogen (N), % 0
0.15 to 0.21
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 5.0 to 6.0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 1.0
0
Residuals, % 0 to 0.5
0